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1 Introduction

In the article [BMP23] the authors claim that the choice of diagonal matrices to
scale torsion point images in the countermeasure FESTA is not a singular choice,
and that the security of the scheme shall not be jeopardized if the commutative
subgroup of diagonal matrices could be replaced by any other commutative sub-
group of invertible matrices, such as that of circulant matrices1. In the framework
of [FFP24], it is interesting to ask if the corresponding level structures reduce
to each other. Here we confirm that the circulant case indeed reduces to the di-
agonal case as proposed in [BMP23] when the scaling matrices are defined over
(Z/NZ)× for N = pr for prime p > 2. In the special case when the matrices
are defined over finite fields i.e, N = p for some large prime, the reduction to
the diagonal case holds for any (non-trivial) commutative subalgebra. However,
when N = 2k, we show that a reduction between the two cases is not possible
by our method, which is in contrast to the aforementioned claim.

2 Preliminaries

2.1 Matrices

Definition 2.1. A n× n circulant matrix C takes the following form:

c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1

cn−1 cn−2 · · · c1 c0


Definition 2.2. For a ring R and n ≥ 1, let α ∈ R be a principal n-th root of
unity. The Discrete Fourier transform over a ring R is defined as follows (in

1 Implicitly, the choice of scaling matrices sourced from the group must be non-trivial
to prevent exploitation by the SIDH attacks.



matrix notation):
f0
f1
...

fn−1

 =


1 1 1 · · · 1
1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...
1 αn−1 α2(n−1) · · · α(n−1)(n−1)




v0
v1
...

vn−1



2.2 Level structures

We shall use the framework of isogeny problems with level structure as proposed
in [FFP24] to phrase the underlying problem in FESTA. The definition of a
Γ -SIDH problem is as follows:

Definition 2.3. Fix coprime integers d,N and Γ ≤ GL2(Z/NZ). Let E ϕ−→ E′

be an isogeny of degree d and S be a Γ level structure.
The (d, Γ )-modular isogeny problem (of level N) asks that given (E,S,E′, ϕ(S))
to compute ϕ. When d is clear, this is referred to as the Γ -SIDH problem.

If one replaces Γ by

{(
a 0
0 b

)}
≤ SL2, then we have the underlying Γ -SIDH

problem for FESTA, and analogously for other Γ .

3 Reduction

Lemma 3.1. For a matrix A ∈ SL2(Z/NZ) and Γ ≤ SL2(Z/NZ), a Γ -SIDH
problem reduces to A−1ΓA-SIDH problem, given an oracle to solve discrete log
in µN ⊂ F×

qr , the subgroup of nth roots of unity.

Proof. Let (E,S,E′, S′) be a Γ -SIDH problem. Choose a representative
(P,Q) of S, and compute its Weil pairing W1 := eN (P,Q). Define S̄ = A−1ΓA ·
(P,Q). The Weil pairing gives us

eN (ϕ(S̄)) = eN (S̄)deg ϕ = W d
1

Now, choose a representative (P ′, Q′) := ϕ(P,Q) of ϕ(S) and compute the
Weil pairing W2 = eN (P ′, Q′). Use the oracle to compute discrete logarithm
x of W d

1 to base W2 and find a matrix γ′ ∈ Γ such that det γ′ = x. Define
S̄′ := A−1ΓA · γ′ · (P ′, Q′); then S̄′ = ϕ(S̄). Hence (E, S̄, E′, S̄′) is an instance
of A−1ΓA-SIDH problem, having the same solution as the Γ -SIDH problem. □

3.1 For N = pk with odd p

Lemma 3.2. If C denotes a circulant matrix defined over2 Z/NZ and F de-
notes the Discrete Fourier transform matrix defined over Z/NZ, then for some
diagonal matrix D we have that C = F−1DF .

2 This theorem holds for any ring R such that F is invertible in Mn×n(R).
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Proof. Any circulant matrix can be decomposed into a polynomial in terms
of the permutation matrix P as C =

∑n
i=0 ciP

i where ci are entries of the
circulant matrix. Since the permutation matrix is defined overR, the eigenvectors
of P are (αk, α2k, . . . , α(n−1)k) for 0 ≤ k ≤ n−1 where α is a principal n-th root
of unity. Then the permutation matrix (and subsequently linear combination of
it’s powers) can be diagonalized by conjugating with a matrix which has the
eigenvectors as columns. This matrix is precisely the Discrete Fourier Transform
matrix as defined above. Hence the circulant matrix can be written as C =
F−1DF where D is the diagonal matrix obtained from the linear combination
of diagonal matrices. □

Using the above two lemmas, one can conclude the following theorem:

Theorem 3.3. For D =

{(
a 0
0 b

)}
and C =

{(
a b
b a

)}
such that both are sub-

groups of SL2(Z/NZ), where N = pk for p > 2 and k > 0. Then the C-SIDH
problem reduces to D-SIDH problem.

3.2 For N = 2k

Theorem 3.4. For a invertible matrix of the form

(
a b
b a

)
, there does not exist

a diagonalization over the ring Z/NZ where N = 2k, for k > 0.

Proof. Let A :

(
a b
b a

)
∈ SL2(Z/NZ) such that it is invertible, which implies

detA = (a2 − b2) is a unit. Since the odd numbers in (Z/NZ) are the units, it
is not possible if both a and b are odd (or even), hence one must be odd and
the other must be a even for the matrix A to be invertible. Without loss of
generality, assume that a is a even and b is a odd.

The characteristic polynomial of A is p(t) = (t − a)2 − b2. If we solve the
equation for the eigenvalues, (t− a)2 = b2 mod N entails that (t− a) is a odd
since b is a odd. Since a is a even and (t − a) is a odd, it implies that the

eigenvalues must be a odd. Let λ be an eigenvalue of A and v :=

(
x
y

)
be the

corresponding eigenvector. From the equation Av = λv we obtain the equations
ax + by = λx mod N and ay + bx = λy mod N . Adding both of them, we
obtain (a+ b− λ)(x+ y) = 0 mod N .

Suppose x, y are not both odd (or even) at the same time, i.e, (x + y) and
(x−y) are odd. This implies that (a+b−λ) = 0 mod N =⇒ a+b = λ mod N .
Then substituting λ in the equation ax+ by = λx mod N we have b(y− x) = 0
mod N . Since both are odd by assumption, it is a clear contradiction. Hence x, y
must be both odd (or even). We have the modular matrix3 (v1, v2) obtained from

the corresponding eigenvectors vi whence vi =

(
xi

yi

)
with xi, yi being both odd

(or even). However for all possible combinations of vi (i.e, when vi is comprised

3 The matrix P such that A = PDP−1 where D is a diagonal matrix.
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of units or non-units), the modular matrix turns out to be singular. This entails
that a diagonalization is not possible for A over the ring (Z/NZ). □

Hence our strategy of the previous section fails and we cannot say anything
conclusively regarding the reduction of the circulant case to the original diagonal
case. This is indeed contrasting to the claim of [BMP23], since this reduction
does not hold when N = 2k, a parameter choice made in FESTA.

3.3 Finite Fields

For a finite field k = Z/pZ for p > 2, it is a well known result that the 2-
dimensional commutative matrix subalgebras of Mn×n(k) could be classified up
to isomorphism as follows:

D =

{(
a 0
0 b

)}
C =

{(
a b
b a

)}
T =

{(
a b
0 c

)}
In [FFP24] the authors have already showed the reductions between T and

D. In Theorem 3.3 above, we have shown that C reduces to D. Thus one can
conclude that for N = p, the choice for any commutative subalgebra in FESTA
still reduces to the original formulation of FESTA.

Acknowledgements. I would like to thank Prof. Péter Kutas for posing the
question and verifying the results.
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