
Cryptanalysis of Isogeny-based
cryptosystems in a leakage model

Subham Das

A dissertation submitted for the partial fulfilment of BS-MS dual
degree in Science

Indian Institute of Science Education and Research, Mohali
April, 2025

Certificate of Examination

This is to certify that the dissertation titled Cryptanalysis of Isogeny-based
cryptosystems in a leakage model submitted by Subham Das (Reg. No.
MS20121) for the partial fulfillment of BS- MS Dual Degree programme of the in-
stitute, has been examined by the thesis committee duly appointed by the institute.
The committee finds the work done by the candidate satisfactory and recommends
that the report be accepted.

Prof. Vaibhav Vaish Prof. Shane D’Mello Prof. Abhik Ganguli

Prof. Abhik Ganguli Prof. Péter Kutas
(Local Supervisor) (External Supervisor)

Dated: .

I

II

Declaration

The work presented in this dissertation has been carried out by me under the guid-
ance of Prof. Péter Kutas from Eötvös Lorànd University and Prof. Abhik
Ganguli at the Indian Institute of Science Education and Research, Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or
a fellowship to any other university or institute. Whenever contributions of others
are involved, every effort is made to indicate this clearly, with due acknowledgement
of collaborative research and discussions. This thesis is a bonafide record of original
work done by me and all sources listed within have been detailed in the bibliography.

Subham Das
(Candidate)

Dated: .

In my capacity as the supervisor of the candidate project work, I certify that the
above statements by the candidate are true to the best of my knowledge.

Prof. Abhik Ganguli Prof. Péter Kutas
(Local Supervisor) (External Supervisor)

Dated: .

III

IV

Acknowledgements

I would like to begin by expressing my gratitude to Prof. Péter Kutas’s thorough
guidance, insights, his constant encouragement and support throughout the duration
of the project has made it possible for me to compose this thesis. My sincere thanks for
showing me the beauty of cryptography and the opportunity to work on this project. I
would like to thank Prof. Abhik Ganguli, for his supervision, encouragement, feedback
and seeing through the completion of the thesis. I shall be ever grateful for your
insightful advice about the varied aspects of math, research and academia every time
we have interacted. I am grateful to my thesis committee members, Prof. Shane
D’Mello and Prof. Vaibhav Vaish, for their efforts to provide constructive feedback
and evaluate my Master’s thesis. I also extend my heartfelt thanks to my research
collaborators, Riccardo and Jonas, for the opportunity to discuss and proliferate ideas,
which indeed has enriched my understanding of the subject.

I would like to thank IISER Mohali for giving me the opportunity to undertake
this research as a part of my Master’s thesis project. I would like to thank the
Faculty of Informatics, ELTE for hosting my research visit to Prof. Péter Kutas.
I would like to acknowledge the Tempus Public Foundation for awarding me the
Stipendium Hungaricum scholarship, which facilitated my research visit to Eötvös
Loránd University.

I would like to thank and express gratitude to my parents: my late father, to
whom I dedicate this thesis to, without whose blood and sweat I would not be in this
position today, and without whose care and love I would not be able to grow as a
human being, and my mother, whose patience, love and endurance through the past
years has sustained me, without whose persistent support and encouragement neither
this work, nor the completion of my degree would be possible.

I thank Rabsan, Soham,Sahil and Nele for their constant support throughout the
duration of the thesis undertaking, in innumerable ways both academic and otherwise.
I thank Shreyas, Manvendra, Rajdeep and Joshua for exploring with me the nooks
and crannies of math and academia, and for tolerating me as a fellow math major.

Finally, in all humility do I acknowledge that this work neither depends on my
will nor my exertion, but on God, who has mercy.

V

Abstract

In this thesis we shall investigate and analyse three isogeny-based cryptosystems:
M-SIDH, FESTA and POKÉ, all of which are proposed countermeasures to the attacks
against SIDH. We analyse them in the ‘leakage model’ where the core assumption
is that partial information about the cryptosystems’ internal secret state becomes
available to the adversary. We present novel attacks in this scenario, against the
cryptosystems and fill the absence of such analysis in contemporary research literature
on isogeny-based cryptosystems.

VI

সারাংশ

এই নিবন্ধতে আমরা তদন্ত এবং বিশ্লেষণ করবো তিনটি আইসোজেনি-ভিত্তিক তথ্যগুপ্তিতন্ত্র: এম-সাইঢ
(M-SIDH), ফেসটা (FESTA) এবং পোকে (POKÉ), যেগুলি সাইঢ (SIDH) তথ্যগুপ্তিতন্ত্রর বিরুদ্ধে

আক্রমণ নিরোধের প্রকল্প | আমরা এই তথ্যগুপ্তিতন্ত্র-গুলিকে একটি ‘ছিদ্রগুন আদর্শে ’ বিশ্লেষণ করবো,
যেই আদর্শের মূল অনুমান হলো যে তথ্যগুপ্তিতন্ত্রের বিরুদ্ধে কোনো প্রতিপক্ষ সেই তন্ত্রের অভ্যন্তরীণ অবস্থার

ব্যাপারে কিছু আংশিক তথ্য লাভ করতে পারে এবং সেটি যন্ত্রটার বিরুদ্ধে আক্রমণে ব্যবহার করতে পারে |
এই নিবন্ধে, উপরে বর্ণিত প্রেক্ষাপটে আমরা এই তিনটি তথ্যগুপ্তিতন্ত্রের বিরুদ্ধে কিছু অভিনব আক্রমণ ব্যাখ্যা

করবো এবং আইসোজেনি-ভিত্তিক তথ্যগুপ্তিতন্ত্র জড়িত বর্তমান গবেষণা সাহিত্যে এইরকম বিশ্লেষণের অভাব

পূর্ণ করবো |

VII

List of Algorithms

1 Diffie-Hellman protocol . 3
2 LLL algorithm (with Euclidean norm and δ = 3/4) 17
3 Buchberger’s algorithm . 19
4 Coppersmith’s method . 26
5 Constructing an optimal set F . 28
6 SIDH.isogeni computing public keys 30
7 SIDH.isogexi shared key establishment 31
8 SIDH.Enci encryption algorithm . 31
9 SIDH.Deci decryption algorithm . 31
10 f(m = (〈K1〉, 〈K2〉,Γ′), pk) trapdoor function 39
11 f−1(m = (E1, R1, S1, E2, R2, S2) trapdoor inversion algorithm 40
12 FESTA.Enc(pk,m) encryption algorithm 41
13 FESTA.Dec(sk, ct) decryption method 42
14 Generating a q(2a − q)-isogeny . 45
15 POKE.Enc encryption algorithm . 46
16 POKE.Dec decryption algorithm . 47

VIII

Contents

Abstract VI

সারাংশ VII

List of Algorithms VIII

1 Introduction 2

2 Preliminaries 7
2.1 Elliptic Curves and Isogenies . 7

2.1.1 Elliptic curves . 7
2.1.2 Elliptic curves over finite fields 11
2.1.3 Pairings and Isogeny Representations 11

2.2 Lattice theory . 15
2.2.1 Basic notions . 15
2.2.2 Lattice reduction . 16

2.3 Gröbner Bases . 18

3 Finding small roots of polynomials 20
3.1 Coppersmith’s method . 20

3.1.1 Univariate case . 21
3.1.2 Bivariate case . 22
3.1.3 Multivariate case . 23

3.2 Automated Coppersmith . 24
3.2.1 Procedure . 25
3.2.2 Parameter choices . 26

4 Isogeny-based cryptosystems 29
4.1 SIDH: Supersingular Isogeny Diffie Hellman 29

4.1.1 Protocol . 29
4.1.2 SIDH attack . 32

IX

4.2 M-SIDH: Masked Supersingular Isogeny Diffie Hellman 33
4.2.1 Protocol . 33
4.2.2 Security Analysis . 35
4.2.3 Parameters . 37

4.3 FESTA: Fast Encryption from Supersingular Torsion Attacks 38
4.3.1 FESTA trapdoor function . 38
4.3.2 Protocol . 41
4.3.3 Security Analysis . 41
4.3.4 Parameters . 42

4.4 POKÉ: POint-based Key Exchange 43
4.4.1 Protocol . 44
4.4.2 Security Analysis . 48
4.4.3 Parameters . 49

5 Cryptanalysis in the bounded-leakage model 50
5.1 Bounded-leakage model . 50
5.2 Problem statement . 51
5.3 Coppersmith-style attacks . 51

5.3.1 M-SIDH . 51
5.3.2 FESTA . 52
5.3.3 POKÉ . 54

5.4 Combinatorial attacks . 55
5.4.1 Procedure . 55
5.4.2 Complexity . 56

6 On the choice of matrices made in FESTA 58
6.1 Introduction . 58
6.2 Preliminaries . 59

6.2.1 Matrices . 59
6.2.2 Level structures . 59

6.3 Reduction . 59
6.3.1 For N = pk with odd p . 60
6.3.2 For N = 2k . 61
6.3.3 Finite Fields . 62

X

Dedicated to my father, Subhendu Das
(10.01.1957 - 29.06.2022).

Chapter 1

Introduction

Historically, prior to the second half of the 20th century, the discipline of cryptography
had mainly existed as an art for constructing and breaking ‘ciphers’— an algorithm
and an associated secret value known as key, whose objective was to enable secret
communication between parties. The cipher allowed one to turn a piece of message
incomprehensible to none but the possessor of this key, thereby ensuring the message’s
confidentiality. This process of breaking and reconstruction would often be guided
by intuition and creativity, with little room for development of systematic frame-
works, formalization and foundational principles. The establishment of the theory of
computation, and the subsequent formalization of algorithms and their complexity in
1940-50’s finally paved the way for transformation of cryptography into a rigorous sci-
entific discipline. Today, the field has pervaded deep into society, with applications in
banking, public communications, medical services, commerce, journalism etc., besides
the age-old use in military and governmental organizations.

The goal of modern cryptography is not to design ciphers (or broadly ‘cryptosys-
tems’) which rely on perceived complexity or cunning, but designing cryptosystems
where the possibility of an adversary learning secret information would be equivalent
to expenditure of a large computational resource1. A cryptosystem is said to be secure
against a particular adversary, when such an equivalence can be shown in a rigorous
fashion.2

An exemplary feat of modern cryptography is the existence of key-exchange protocols.
It is akin to sharing a secret key with your intended partner by first performing a lo-
cal computation, and then shouting it across a room filled with untrusted people.
The invention of such protocols not only radically changed the research-community’s

1i.e, the computational cost is often larger than any realistic attacker can afford.
2There also exists information-theoretic security, where the requirement is absolutely zero infor-

mation is leaked, even to an adversary with unlimited computational power. However for all practical
purposes, this condition is unnecessarily strong.

2

approach to the field, but also ushered cryptography from the private domain to the
public domain. The first key-exchange protocol was proposed by Diffie and Hellman
[DH76] in 1976, prior to which it was believed that secure communication was im-
possible without first establishing a secure channel of communication between two
parties. The authors observed the existence of an asymmetry, in terms of a procedure
which can be easily performed yet extremely hard to reverse,3 which they used to the
advantage that allowed two parties to perform local operations on the message and
share it to another via a public channel, such that anyone but the intended receiver
cannot reverse the operation.

We now define the Diffie-Hellman key exchange protocol formally, as it appeared
in [DH76], in the group theoretic setting. Let G be a polynomial-time algorithm,
which on input of a n-bit string λ outputs a description of the group G, its order q
(with ||q|| = n) and a generator g ∈ G.

Algorithm 1 Diffie-Hellman protocol
Input: A n-bit string λ.

1: Alice runs G(λ) to obtain (G, q, g).
2: Alice chooses a uniform x ∈ Zq, and computes hA := gx

3: Alice sends (G, q, g, hA) to Bob.
4: Bob receives (G, q, g, hA). Bob chooses a uniform y ∈ Zq, and computes hB := gy

5: Bob sends hB to Alice and outputs the key kB := hyA = gxy

6: Alice receives hB and outputs the key kA := hxB

An in depth discussion of the DH protocol and key-exchange protocols can be
found in [KL20]. It must be noted that soon after the publication of this protocol,
it was widely adapted to various other scenarios due to the flexibility it yields. A
notable adaptation of the DH Protocol was the case of elliptic curves, which gave us
the Elliptic curve Diffie-hellman (ECDH) protocol. ECDH went on to be adopted
as one of the most widely used cryptosystems due to its compactness, efficiency and
portability while still maintaining strong security.

Along with the developments in cryptography, the mid-1980s, a new kind of com-
puting system was envisioned which was based on the laws of quantum physics. The
classical computer uses bits that can be either 0 or 1 state, whereas the quantum
computer uses qubits (analogous to bits) that are either 1 or 0, or in the infinitely
many superposition of the two states. At the end of a computation procedure, the

3such as given a collection of large primes, it is easy to find its product, but extremely hard to
recover the collection if the product is given. This problem is indeed hard for classical computers,
but as we shall see it is not the case with quantum ones.

3

qubit is measured, which forces it to be either 1 or 0, with a certain probability.
The properties of superposition and entanglement of quantum states allow quantum
computers to solve certain class of problems much more efficiently than classical com-
puters.

In particular, Peter Shor proposed an algorithm for quantum computers4 in 1999
which would be able to break cryptosystems like RSA and ECDH, by solving the un-
derlying hard problems such as prime factorization and the discrete logarithm problem
respectively. If not bad already, the idea of increasing the parameters of these cryp-
tosystems to make them secure against quantum attacks would render the protocols
totally unfit for use. Hence, to provide security against such quantum attacks, one
would need to desert these cryptosystems entirely, and seek newer methods.

Towards this ailment, the field of post quantum cryptography comes to aid. It
aims to supply hard problems, and cryptosystems built upon them, which would stay
secure from both quantum and classical attacks. Under this heading, many different
flavours of cryptography come in such as lattice-based, code-based, isogeny-based and
multivariate cryptography, each of which have their strengths and weaknesses. In this
thesis we shall focus on isogeny-based cryptography.

The field had its inception two decades ago through the work of Couveignes
[Cou06], making isogeny-based cryptography one of the youngest fields in cryptol-
ogy. It has proposed several hard problems involving computation of isogenies of
elliptic curves, the primary of which is the following:

Problem 1.0.1. Given two supersingular elliptic curves, find an isogeny between
them.

Till date, the known quantum and classical attempts towards this problem still
remain with exponential time complexity, and remains one of the contenders for
quantum-hard problems. A number of cryptographic protocols have been proposed in
the recent past based on Problem 1.0.1, a notable one being the Supersingular Isogeny
Diffie Hellman (SIDH) protocol.

The SIDH protocol, proposed in 2011 [Jao22], was an adaptation of the classical
Diffie-Hellman key-exchange protocol to the isogeny framework, which was based on
a variation of the above problem (Problem 4.1.1). SIDH was one of the most popular
post quantum alternatives due it’s small key size and fast implementation and became
a leading contender in the 2016 NIST Post-Quantum Cryptography Standardisation

4It must be noted that as of present date, we still do not have a powerful enough quantum
computer which executes Shor’s algorithm to break current levels of security given by RSA, ECDH
etc. The rough estimate until we have such a computer is 15 years from now.

4

process, and made it to the 4th round. A sudden halt in it’s indisputable 11 year
reign came in July, 2022 when a polynomial-time classical attack was found [CD22],
which was further enhanced by [MM22], [Rob22]. It must be noted that these attacks
leveraged the extra information revealed by SIDH (namely image of torsion points),
however these attacks do not affect other isogeny-based schemes such as CSIDH,
SQISign and its variants which are built on different premises.

While this series of events led to the demise of a promising post-quantum candi-
date, it also led cryptographers to probe deeper into the understanding of the fun-
damental assumptions involved and the exploration of mathematical techniques from
the theory of abelian varieties (which featured heavily in the 2022 attacks). This has
also spurred a flurry of activity towards building more robust cryptographic schemes
based on isogenies.

One of the popular lines of research involves coming up with countermeasures
which intend to mask the crucial piece of torsional information, that enabled the
SIDH attacks, and thereby aiming to have a similar secure isogeny based protocol. A
few to name in this direction would be [FMP23, BMP23, BM24, NO23]. However,
cryptographers by training, remain highly skeptical of new assumptions and construc-
tions, and the security claims they make due to the possible presence of crucial flaws
in such designs. The practices adopted to ensure if such flaws are indeed absent
mostly fall in two categories: provable security and cryptanalysis. While the former
method tries to model plausible attacks against the protocol and reduce the central
assumptions involved in a cryptosystem to a known hard problem, the latter method
often involves coming up with actual attacks against the cryptosystem in the presence
(and even absence) of certain assumptions.

In this thesis, we take the latter approach of cryptanalysis of three isogeny-
based key exchange protocols and SIDH countermeasures, namely: M-SIDH [FMP23],
FESTA [BMP23] and POKÉ [BM24]. We attempt to construct attacks against these
three schemes, in the context of ‘leakage model’, in which the core assumption is that
partial information about the secret components is available to the adversary. In real-
world deployment, side-channel attacks are a class of attacks where the adversary can
learn some partial information about the internal secret states of a protocol through
exploitation of the physical attributes of the computing device, (such as through its
power consumption, electromagnetic radiation, timing, temperature etc.) or flaws in
the system (such as imperfect deletion). The leakage model (as described in Section
5.1) formally captures these classes of attacks, and enables us to predict and attack
the robustness of a cryptosystem, even before an actual side-channel is discovered.

5

Contributions

The main contributions to current literature on cryptanalysis of isogeny-based schemes
are presented in Chapter 5, which include novel attacks against M-SIDH, FESTA,
POKE involving both algebraic and combinatorial techniques. The contents of this
chapter is a result of a joint research collaboration between Riccardo Invernizzi, KU
Leuven, Prof. Péter Kutas, Jonas Meers, Ruhr University Bochum and the author.
The results presented here are hitherto unpublished, and shall appear in full detail in
a research publication in the near future.

Outline

The thesis is divided into the following thematic chapters: Chapter 2 summarizes
the necessary mathematical preliminaries required to understand the thesis. Chap-
ter 3 delves into the known algebraic cryptanalytic techniques in literature, notably
Coppersmith’s method and its variations. Chapter 4 summarizes the three target
cryptosystems, their protocol design, underlying problems and known security analy-
ses. Chapter 5 presents the attacks against the target cryptosystems in the context of
leakage model. Chapter 6 presents a minor result obtained by the author in relation
to the parameter choice of the FESTA cryptosystem.

6

Chapter 2

Preliminaries

In this chapter we shall be presenting the mathematical preliminaries involved to fully
understand the ideas presented in this thesis. Section 2.1 is primarily sourced from
[De 17, De 20, Sil92] and Section 2.2 is primarily sourced from [Gal12].

2.1 Elliptic Curves and Isogenies

Throughout this section, let k be a field and k̄ its algebraic closure. We begin by
having some preliminary definitions:

2.1.1 Elliptic curves

Definition 2.1.1. (Projective space)
We denote the projective space of dimension n by Pn or Pn(k̄), which is the set of

all (n+ 1)-tuples
(x0, . . . , xn) ∈ k̄n+1

such that (x0, . . . , xn) 6= (0, . . . , 0) taken modulo the equivalence relation (x0, . . . , xn) ∼
(y0, . . . , yn) iff ∃λ ∈ k̄ such that for all i, we have xi = λiyi.

Denote (x0 : · · · : xn) as the equivalence class of a given projective point.

Definition 2.1.2. (Rational points)
The set of k-rational points is defined in the following manner:

Pn(k) = {(x0 : · · · : xn) ∈ Pn|xi ∈ k for all i}

Fixing arbitrarily xn = 0, we define a projective space of dimension n− 1, whose
points we call points at infinity.

Assuming that char(k) 6= 2, 3, we define an elliptic curve:

7

Definition 2.1.3. (Weierstrass Equation)
An elliptic curve defined over k is the locus in P2(k̄) of an equation

Y 2Z = X3 + aXZ2 + bZ3 (2.1)

with a, b ∈ k and 4a3 + 27b2 6= 0. The point (0 : 1 : 0) is the only point on the line
Z = 0, and hence called the point at infinity of the curve.

If we define x = X/Z and y = Y /Z, then the resulting expression of the Weier-
strass form is called the affine form,

y2 = x3 + ax+ b, and O∞ = (0 : 1 : 0)

One can show that for char(k) 6= 2, 3, any genus 1 smooth projective curve with a
distinguished O∞ is isomorphic (as an algebraic curve) to an elliptic curve defined by
the Weierstrass equation, by a morphism such that O∞ 7→ (0 : 1 : 0). We now define
the group law on elliptic curves:

Definition 2.1.4. (Group law)
Let E : y2 = x3 + ax + b be an elliptic curve. For two points P1 = (x1, y1) and

P2 = (x2, y2) om E different from O∞, we define the group operation ⊕ on E as
follows:

1. P ⊕O∞ = O∞ ⊕ P = P for any point P ∈ E

2. If x1 = x2 and y1 = −y2, then P1 ⊕ P2 = O∞.

3. Otherwise set
If P 6= Q, λ =

y2 − y1
x2 − x1

If P = Q, λ =
3x21 + a

2y1

then the point (P1 ⊕ P2) = (x3, y3)

x3 = λ2 − x1 − x2
y3 = −λx3 − y1 + λx1

In the following sections we shall simply write + in place for ⊕ and it can be shown
that the above defines a commutative group under this group law. The subgroup of
k-rational points on an elliptic curve E/k (i.e, defined over k) is usually denoted as
E(k).

8

Definition 2.1.5. (m-torsion group) For an elliptic curve E, we define the m-torsion
group as:

E[m] = {P ∈ E(k̄) |mP = O∞}

Now we shall describe the characterization of the group structure of elliptic curves.
For the torsion part, it is as follows:

Theorem 2.1.6. Let E/k and let m 6= 0 be an integer. The m-torsion group of E,
and denoted by E[m], has the following structure:

1. E[m] ∼= (Z/mZ)2 if the characteristic of k does not divide m.

2. If p > 0 is the characteristic of k, then one of the following is true:

(a) For any i ≥ 0, E[pi] ∼= Z/piZ

(b) For any i ≥ 0, E[pi] ∼= {O∞}

Proof. See [Sil92, III, Cor.6.4 and V.3, Them 3.1] �

Definition 2.1.7. [Sil92, V.3, Def.] If char(k) = p, we define a curveE/k supersingular
if E[pi] ∼= {O∞} for all i = 1, 2, 3 . . . and ordinary otherwise.

Proposition 2.1.8. (j-invariant) Let E : y2 = x3 + ax + b be an elliptic curve, and
define the j-invariant of E as

j(E) = 1728
4a3

4a3 + 27b2

Two curves are isomorphic over the algebraic closure k̄ iff they have the same j-
invariant.

Proof. See [Sil92, III, Prop. 1.4]. �

Definition 2.1.9. Let E and E ′ be elliptic curves defined over k. An isogeny φ :

E → E ′ is a non-constant algebraic map of projective varieties sending the point at
infinity of E onto the point of infinity of E ′.

Theorem 2.1.10. Let E,E ′ be two elliptic curves, and let φ : E → E ′ be an isogeny
between them. Then the following conditions hold:

1. φ is a finite map of curves.

2. φ is a group morphism (E,O∞,⊕)
φ−→ (E ′, O′

∞,⊕).

3. φ has finite kernel.

9

Proof. See [Sil92, III, Thm. 4.8 and Cor. 4.9]. �

We term two curves as isogenous if they have an isogeny between them. By
[Sil92, III, Thm. 6.1], we can conclude that the property of being isogenous is an
equivalence relation between elliptic curves. Isogenies from a curve to itself are called
endomorphims. An important endomorphism is the multiplication map defined by:

[m] : P 7→ mP ; ker[m] = E[m]

We now shall describe the algebraic properties of isogenies in the following defini-
tions and theorems:

Definition 2.1.11. (Degree of an isogeny)
Let φ : E → E ′ be an isogeny defined over a field k, and let k(E), k(E ′) be

the function fields of E,E ′. By composing φ with functions of k(E ′), we obtain
a subfield of k(E) and we denote it by φ∗(k(E ′)). We define the degree of φ as
degφ = [k(E) : φ∗(k(E ′))], and it is always finite.

Definition 2.1.12. An isogeny φ : E → E ′ is said to be separable if the extension of
the function fields is separable.

Proposition 2.1.13. Let φ : E → E ′ be a separable isogeny, then we have degφ =

| kerφ|.

Proof. See [Sil92, III, Cor 4.9 and Thm.4.10]. �

All isogenies hereafter shall be considered separable. By the following proposition,
we can establish that separable isogenies are determined by their kernel completely:

Proposition 2.1.14. Let E be an elliptic curve and let G be a finite subgroup of E.
There is a unique elliptic curve E ′, and a separable isogeny φ, such that kerφ = G

and φ : E → E ′.

Proof. See [Sil92, III, Prop. 4.12] for the proof. �

Let us denote the image curve E ′ as E/G.

Theorem 2.1.15. (Dual Isogeny) Let φ : E → E ′ be an isogeny of degree m. There
is a unique isogeny φ̂ : E ′ → E such that

φ̂ ◦ φ = [m]E, φ ◦ φ̂ = [m]E′

is called the dual isogeny and it has the following properties:

1. φ̂ is defined over k iff φ is

10

2. ψ̂ ◦ φ = φ̂ ◦ ψ̂ for any isogeny ψ : E ′ → E ′′

3. ψ̂ + φ = ψ̂ + φ̂ for any isogeny ψ : E → E ′

4. degφ = deg φ̂

5. ˆ̂
φ = φ

Proof. See [Sil92, III.6, Thm.6.2] for the proof. �.

2.1.2 Elliptic curves over finite fields

In the following subsections, we let E be an elliptic curve defined over k = Fq. We
define the following special endomorphism for curves over finite fields:

Definition 2.1.16. (Frobenius endomorphism)
For E/Fq, we define its Frobenius endomorphism π : E → E such that

(X : Y : Z) 7→ (Xq : Y q : Zq)

Theorem 2.1.17. (Hasse’s theorem) Let E be an elliptic curve defined over a finite
field K with q elements then,

||E(k)| − q − 1| ≤ 2
√
q

Proof. See [Sil92, V, Thm.1.1]. �

We note an important theorem which connects isogenies between two elliptic
curves with their Frobenius endomorphisms.

Theorem 2.1.18. (Tate’s theorem) Two elliptic curves E,E ′, defined over a finite
field k are isogenous over k iff |E(k′)| = |E ′(k′)| for all finite extensions k′ of k.

Proof. See [Tat66, §3., Thm. 1(c)] for the full proof. �

A thorough treatment on the mathematics behind isogeny-based cryptography can
be found in [De 17].

2.1.3 Pairings and Isogeny Representations

We define pairings on elliptic curves as follows, with a more detailed exposition avail-
able in [De 20].

Definition 2.1.19. (Pairings)
A pairing of two groups G1, G2 is a bilinear map e : G1 ×G2 → G3 such that:

11

1. e(ga, h) = e(g, ha) = e(g, h)a

2. e(gg′, h) = e(g, h)e(g′, h)

3. e(g, hh′) = e(g, h)e(g, h′)

for all a ∈ Z, all g, g′ ∈ G1, and all h, h′ ∈ G2. A pairing is said to be non-degenerate
if:

• e(g, h) = 1, for all g =⇒ h = 1

• e(g, h) = 1, for all h =⇒ g = 1

A pair is said to be alternating if G1 = G2 and e(g, g) = 1 for all g, which implies
that e(g, h) = e(h, g)−1.

We do not define the Weil Pairing here, and instead refer to [Sil92, III.8, Def.] for
its definition. However we note that the Weil pairing is a pairing as per Definition
2.1.19. An important property of the Weil pairing is as follows:

Proposition 2.1.20. [Sil92, III.8, Prop 8.2] Let φ : E → E ′ be an isogeny of elliptic
curves. Then for all N-torsion points P ∈ E[N] and Q ∈ E ′[N], we have

eN(P, φ̂(Q)) = eN(φ(P), Q)

A straightforward corollary of the above is the following:

Corollary 2.1.21. With the assumptions of Proposition 2.1.20, then for any N,P,Q
we can say that

eN(φ(P), φ(Q)) = eN(P,Q)
degφ

Proof. Using Proposition 2.1.20, we have that

eN(φ(P), φ(Q)) = eN(P, φ̂ ◦ φ(Q))

By using Theorem 2.1.15 we have

eN(P, φ̂ ◦ φ(Q)) = eN(P, [degφ]Q) = eN(P,Q)
degφ

�

Definition 2.1.22. An integer is defined to be n-smooth if it has no prime factor
greater than n.

12

In contemporary cryptographic literature, smooth integers often refer to k-smooth
integers where k ≈ 104.

An important lemma regarding recovering the degree if the torsion basis points
and images are given, is as follows:

Lemma 2.1.23. [FMP23, Lem.1.] Let E and E ′ be elliptic curves defined over Fp2
such that φ : E → E ′ is an isogeny of unknown degree d and let B be a smooth
integer coprime to d such that E[B] ⊂ E(Fp2). Set E[B] = 〈P,Q〉. Then given
P,Q, φ(P), φ(Q), there exists a polynomial time algorithm to recover d mod B.

Proof. One computes the Weil pairing values eB(P,Q) and eB(φ(P), φ(Q)) = eB(P,Q)
degφ,

then one solves a discrete logarithm instance between both quantities to recover
d mod B. Since E[B] ⊂ E(Fp2), the pairing computations run in polynomial time.
Since B is smooth, then using the Pohlig-Hellman algorithm the discrete logarithm
computation runs in polynomial time as well. �

We define isogeny representation as follows:

Definition 2.1.24. [BDD+24, Def.1]
Let φ : E0 → E1 be an isogeny defined over a finite field Fq. An efficient represen-

tation of φ is some data D ∈ {0, 1}∗ of polynomial size in log(degφ) and log(q) such
that there exist:

1. an algorithm that, on input D, produces the domain and codomain E0, E1

2. an algorithm that, on input D, produces the degree degφ

3. an algorithm that, on input D and a point P ∈ E0(Fqk), returns φ(P) in poly-
nomial time in k log(q) and log(degφ)

While in literature there are several efficient isogeny representations used in various
contexts, for a complete survey one can see [Rob24]. We shall be using the following
two representations in this thesis, notably in Section 4.4. We reiterate the definitions
as mentioned in [BM24]. The definitions of SIDH, and FESTA are dealt with in
Chapter 4.

SIDH isogenies: These isogenies are prime-power degree isogenies, with kernel gen-
erators defined over Fp2 . Thus, they can be represented with a kernel representation,
which consists of a curve, its domain and a single point that generates its kernel. To
evaluate an SIDH isogeny φ : E0 → E1 on a point P , Vélu’s formulas [V9char”03017]
give an efficient way to obtain the codomain E1 and its evaluation φ(P). If the isogeny

13

degree is le, a kernel generator can be expressed as a linear combination of two linearly
independent points of order le, thus computing the pushforward of an SIDH isogeny
under another secret isogeny requires revealing the action of the secret isogeny on
two linearly independent points of order le, possibly both scaled by the same random
scalar in Z×

le .

FESTA isogenies: These isogenies have their degree written in the form q(2a− q)
for some positive value a and any q < 2a, and their kernel does mot have gener-
ators defined over Fp2 but over a large extension field. Hence, one needs to use a
higher-dimensional representation, which includes their domain,codomain, together
with their degree and action on a large torsion basis. Since the degree is of the prod-
uct form q(2a−q) we can use the 2-dimensional representation. Such a representation
relies on the following theorem:

Theorem 2.1.25. (Kani’s lemma) Consider the following commutative diagram of
isogenies:

E0 EA

EB EAB

φ1

φ2 φ′2

φ′1

where deg(φi) = deg(φ′) = di and gcd(d1, d2) = 1. Then the isogeny

Φ =

(
φ1 −φ̂′

2

φ2 φ̂′
1

)
: E0 × E0 × EAB → EA × EB

is a (d1 + d2)-isogeny whose kernel is given by

kerΦ = {([−d1]P, φ′
2 ◦ φ1(P)) |P ∈ E0[d1 + d2]}

Proof. See [Kan97] for the full proof. �

Isogeny decomposition and commutative diagrams

Any isogeny φ : E → E ′ of degree d =
∏n

i=1 di can be decomposed into isogenies
φ = φn ◦ · · · ◦ φ1 where each φi has degree di. Assuming all di’s are coprime to each
other, reordering them shall lead to a different set of isogenies between the two curves.
This is illustrated by the following diagram:

14

E1

E0 E3

E2

ψ2=[φ1]∗φ2φ1

φ

φ2 ψ1=[φ2]∗φ1

The above diagrams are known as isogeny commutative diagrams. For isogenies a
d1d2-isogeny φ, we can decompose it as φ = ψ2 ◦φ1 = ψ1 ◦φ2 and it can be confirmed
that kerψ1 = φ2(kerφ2) and converse for ψ2. If the same diagram is defined from φ1

and φ2, we call ψ1 the push-forward of φ1 through φ2 and denote it by ψ1 = φ2∗φ1.
One can also see φ1 as the pullback of ψ1 by ψ2 and we write it as φ1 = φ∗

2ψ1.

2.2 Lattice theory

In this section we shall discuss the theoretical and algorithmic aspects of lattices. A
full discussion on this topic can be availed in [Gal12].

2.2.1 Basic notions

Definition 2.2.1. Let B := {b1, . . . , bn} be a linearly independent set of row vectors
Rm(m ≥ n). The lattice generated by this set is defined as

L :=

{
n∑
i=1

libi : li ∈ Z

}
The set B is called a lattice basis. The lattice rank is n and the lattice dimension is
m. If n = m then the lattice is called a full rank lattice.

A basis matrix B of a lattice L is a n ×m matrix formed by taking the rows to
be basis vectors bi. Thus Bi,j is the j-th entry of the row bi.

Whenever m > n, it is convenient to project the lattice L into Rn using the
following construction, which captures the fact that a linear map which preserves
lengths also preserves volumes.

Lemma 2.2.2. Let B be a n×m basis matrix for a lattice L where m > n. Then there
is a linear map P : Rm → Rn such that P (L) is a rank n lattice and ||P (v)|| = ||v||
for all v ∈ La. Furthermore, 〈bi, bj〉 = 〈P (bi), P (bj)〉 for all 1 ≤ i < j ≤ n.

If the linear map is represented by a m × n matrix P so that P (v) = vP , then a
basis matrix for the image of L under the projection P is the n×n matrix BP , which
is invertible.

15

Proof. See [Gal12, IV, Lem.16.1.5.] for the full proof. �

The determinant of a lattice L is the volume of the parallelpiped of any basis B
of a lattice L.

Definition 2.2.3. Assuming the above notations, the determinant (or volume) of a
lattice L with basis matrix B is | det(BP)|, where P is a matrix representing the
projection of Lemma 2.2.2. When L is a full rank lattice, evidently detL = | det(B)|.

Alternatively, we have a characterization of the determinant in terms of Gram-
Schmidt orthogonalisation.

Lemma 2.2.4. Let B := {b1, . . . , bn} be an ordered basis for a lattice L in Rm and
let b∗1, . . . , b∗n be the Gram-schmidt orthogonalisation of the same. Then det(L) =∏n

i=1 ||b∗i ||.

Proof. See [Gal12, IV, Lem.16.1.14.] for the full proof. �

Definition 2.2.5. Let B := {b1, . . . , bn} be an ordered basis for a lattice L . The
orthogonality defect of the basis is defined as(

m∏
i=1

||bi||

)
/ det(L)

Definition 2.2.6. Let L ⊂ Rm be a lattice of rank n. The successive minima of L
are λ1, . . . , λn ∈ R such that for 1 ≤ i ≤ n, λi is the minimal such that there exist i
linearly independent vectors v1, . . . , vi ∈ L with ||vj|| ≤ λi for 1 ≤ j ≤ i.

We note the following important theorem by Minkowski which relates the deter-
minant of a lattice with its successive minima.

Theorem 2.2.7. (Minkowski) Let L be a lattice of rank n in Rn with successive
minima λ1, . . . , λn for the Euclidean norm. Then

(
m∏
i=1

λi

)1/n

<
√
n det(L)1/n

2.2.2 Lattice reduction

The idea of lattice basis reduction is to transform a given lattice basis into a another
lattice basis which consists of vectors, short and smaller orthogonal defect. The
Lenstra-Lenstra-Lovász (LLL) algorithm is an iterative algorithm which given a lattice
basis performs this reduction. To achieve this we need to define a convenient notion
of reduced basis, and how to proceed with the reduction.

16

Denote µi,j = 〈bi, b∗j〉/〈b∗j , b∗j〉, where {b∗i } denotes the Gram-schmidt orthogonal-
ization of {bi}. We define a LLL-reduced basis as follows:

Definition 2.2.8. Let {b1, . . . , bn} be an ordered basis for a lattice. Denote by
{b∗1, . . . , b∗n} the Gram-schmidt orthogonalisation and write Bi = ||b∗i ||2 = 〈b∗i , b∗i 〉.
For 1 ≤ j < i ≤ n let µi,j be defined as above. Fix 1/4 < δ < 1. The ordered basis is
LLL-reduced (with a factor δ) if the following conditions hold:

1. |µi,j| ≤ 1/2 for 1 ≤ j < i ≤ n.

2. (Lovász condition) Bi ≥ (δ − µ2
i,i−1)Bi−1 for 2 ≤ i ≤ n.

The Lovász condition is usually set to δ = 3/4

Here, we implicitly assume the Gram-Schmidt orthogonalization procedure, which
performs O(n4m logX2) bit operations for a n×m lattice basis B := {bi} and ||b2i || <
X. Refer to [Gal12, IV, Sec.17.3] for further details. We define the LLL algorithm in
Algorithm 2.

Algorithm 2 LLL algorithm (with Euclidean norm and δ = 3/4)
Input: b1, . . . , bn ∈ Zm

Output: LLL-reduced basis B1, . . . , bn

1: Compute the Gram-Schmidt basis b∗1, . . . , b∗n and coefficients µi,j for 1 ≤ j < i ≤ n

2: Compute Bi = 〈b∗i , b∗i 〉 = ||bi||2 for 1 ≤ i ≤ n

3: k = 2

4: while k ≤ n do
5: for j=(k-1) downto 1 do . Performs size reduction
6: Let qj = bµk,je and set bk = bk − qjbj
7: Update the values µk,j for 1 ≤ j < k

8: end for
9: if Bk ≥ (δ − µ2

k,k−1)Bk−1 then
10: k = k + 1

11: else
12: Swap bk with bk−1

13: Update the values b∗k, b∗k−1, Bk, Bk−1, µk−1,j and µk,j for 1 ≤ j < k, and
µi,kµi,k−1 for k < i ≤ n.

14: k = max{2, k − 1}
15: end if
16: end while

17

The complexity of the above algorithm is given by the following theorem and
corollary:

Theorem 2.2.9. [Gal12, IV, Thm.17.5.1] Let L be a lattice in Zm with a basis
b1, . . . , bn, and let X ∈ Z≥2 be such that ||bi||2 ≤ X for 1 ≤ i ≤ n. Let 1/4 ≤ δ <

1. Then the LLL algorithm 2 with factor δ terminates and performs O(n2 log(X))

iterations.

Corollary 2.2.10. [Gal12, IV, Cor.17.5.4] Let the assumptions of Theorem 2.2.9
hold true. Then, the LLL algorithm 2 requires O(n3m log(X)) arithmetic opera-
tions on integer size of O(n log(X)). Using arithmetic gives us the running time of
O(n5m log(X)3) bit operations.

2.3 Gröbner Bases

In commutative algebra, a Gröbner basis is a special generating set of an ideal in a
polynomial ring k[x1 . . . xn], over a field k. The Gröbner bases is useful in deducing
important properties of the ideal and the associated algebraic variety, especially the
dimension and the finiteness of zeroes. It is widely used in algebraic cryptanalysis,
where a cryptosystem is modeled as a set of non-linear equations, and to break it, is
equivalent to solving the system of equations. In this section we recall the basics of
Gröbner bases in three variables.

Let Z[x, y, z] be the polynomial ring x, y, z over Z. A monomial is an elementary
polynomial xa1ya2za3 with a1, a2, a3 ∈ N and a term is λxa1ya2za3 , with λ ∈ Z. Let us
denote (a1, a2, a3) as the monomial xa1ya2za3 .

Definition 2.3.1. The Newton polygon of a polynomial p ∈ Z[x, y, z] is defined as
the convex hull of all monomials (viewed as points in N3) that appear with a non-zero
coefficient in p.

Definition 2.3.2. LetM be a set of monomials. A monomial order onM is a total
order ≺, which satisfies the following properties:

1. For every λ ∈M, it holds that 1 ≺ λ.

2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial in M.

If a monomial ordering is chosen, the initial term of a polynomial p, denoted by
LT (p), refers to its greatest term.

18

Definition 2.3.3. (Gröbner bases)
Let I be an ideal of Z[x, y, z], LT (I) is the set of all leading terms of the polyno-

mials which belong to I. If the set {q1, . . . , ql} is composed by polynomials of I such
that (LT (q1), . . . , LT (ql)) = LT (I), we define it a Gröbner basis of I.

An important question to answer is when does one know that a given basis
{q1, . . . , ql} is Gröbner bases. We have the Buchberger criterion to distinguish be-
tween so, and the corresponding algorithm [Buc70] to construct such bases.

Definition 2.3.4. (S-polynomial, [Buc76, Def.1.8])
Let f, g ∈ Z[x, y, z] be non-zero polynomials and let LT (f) denote the leading

term of a polynomial f , with respect to some monomial order. We call the least
common multiple of LT (f) and LT (g) as ` = LCM(LT (f), LT (g)). Then we define
the S-polynomial of f and g as the combination:

S(f, g) =
`

LT (f)
· f − `

LT (g)
· g

Then we have the following theorem:

Theorem 2.3.5. [Buc76, Thm. 3.3] Let I ⊂ Z[x, y, z] be an ideal, then G =

{q1, . . . , ql} is a Gröbner basis of I if and only if ∀i 6= j, the remainder upon di-
vision of S(qi, qj) by G is zero.

The following algorithm is based on the above criterion, which transforms a basis
of an ideal I into it’s Gröbner basis:

Algorithm 3 Buchberger’s algorithm
Input: A set of polynomials {q1, . . . ql} that generate I.
Output: A Gröbner basis G for I

1: Set G as F
2: For every qi, qj ∈ G, let lij denote the LCM of LT (qi) and LT (qj).
3: Choose two polynomials in G and let us define the S-polynomial Sij = lij

LT (qi)
·qi−

lij
LT (qj)

· qj
4: Divide Sij byG with multivariate division until the remainder is zero. If remainder

is non-zero, then add it to G.
5: Iterate steps 1-4 until all polynomial pairs are considered in G.
6: return G

In practice, one can compute a Gröbner basis using the F4 algorithm [Fau99].

19

Chapter 3

Finding small roots of polynomials

Given a family of polynomial equations, over integer or modulo rings, the problem
of finding ‘small’ roots has importance in cryptanalysis of many protocols relying on
number-theoretic or algebraic hard problems. In this chapter we are going to look
at two such methods, namely Coppersmith’s method and Automated Coppersmith
approach. The contents of this chapter is primarily sourced from [Cor04, May21,
May09, MN23].

3.1 Coppersmith’s method

The first cryptographically relevant procedure to solve the problem of finding small
roots of polynomials was proposed by Don Coppersmith in the articles [Cop96b,
Cop96a]. The method uses lattice reduction techniques as described in Section 2.2.
This method provides provable guarantees to find all roots smaller than a given bound,
in polynomial time. The polynomial run time is due to the ingenious use of the
Lenstra-Lenstra-Lovász (LLL) algorithm, as discussed in Section 2.2. The method
was first applied in [Cop96b, Cop96a, Cop97] which showcased some of the powerful
attacks the RSA function, and since has been a staple cryptanalytic tool against hard
problems. For detailed exposition on RSA cryptanalysis using this method, [May21]
is a great resource.

While the above cited articles present a clean procedure in the univariate polyno-
mial case, in the multivariable case the procedure becomes increasingly complicated.
In [Cor04], Coron gave a simpler and efficient algorithm for finding small roots in the
bivariate case following the simplification made in [HG97].

20

3.1.1 Univariate case

Given a polynomial f(x) the goal is to construct a polynomial g(x) of usually larger
degree such that every small modular root x0 of f i.e, f(x0) = 0 mod N , |x0| < X is
also a root of g over Z. For some fixed m ∈ Z, g(x) is constructed as integer linear
combination of hij = xjN ifm−i(x). Then by design g(x0) = 0 mod Nm as well.

If we identify polynomials {hij} by coefficient vectors, the integer linear combina-
tions of these vectors form a lattice L. One observes that the small vectors in L cor-
respond to linear combinations g(x) with small coefficients. Assuming |g(x0)| < Nm

for all |x0| ≤ X, then it implies that g(x0) = 0, since the only multiple smaller than
Nm is 0 · Nm = 0. This implies that g(x) has the desired roots over integers. The
following lemma (stated in full generality) formalizes the above discussion.

Lemma 3.1.1. [HG97] Let g(x1, . . . , xk) be a univariate polynomial with n monomials.
Let m,X be positive integers. Suppose:

1. g(x01, . . . , x0k) = 0 mod Nm where |x0i| ≤ Xi ∀i ∈ {1, . . . , k}

2. ||g(x1X1 . . . xkXk)|| < Nm/
√
n

Then g(x01X1, . . . , x0kXk) = 0 holds over the integers.

Proof. Property 2 implies that

|g(x01 . . . x0k)| = |
∑
i

cix
j1
01 . . . x

jk
0k| ≤

∑
i

|cixj101 . . . x
jk
0k|

≤
∑
i

|ci|X i ≤
√
n||g(x1X1 . . . xkXk)|| < Nm.

By property 1 we know that g(x01 . . . x0k) is a multiple ofNm, and therefore g(x01X1 . . . x0kX1) =

0. �

Recall, by Theorem 2.2.10 for a lattice L with a basis B = {bi}i=1...n, the LLL
algorithm outputs a vector v ∈ L such that ||v|| ≤ 2

n−1
4 det(L)1/n. To find a solution

to the polynomial f , then one can implement LLL such that we satisfy property 2 of
Lemma 3.1.1 i.e, one has to find v such that

||v|| ≤ 2
n−1
4 det(L)1/n < Nm

√
N

In the following theorem we shall see that det(L) = NΘ(m) with m ≈ logN . For
sufficiently large N we have the enabling condition detL ≤ Nmn which optimizes the
choice of bound X and plays a crucial role in all Coppersmith style constructions.

21

Theorem 3.1.2. Let N be an integer of unknown factorization. Let f(x) be a uni-
variate monic polynomial of constant degree δ. Then we can find all solutions x0 of
the equation

f(x) = 0 mod N with |x0| ≤ N1/δ

in time polynomial of logN and δ.

Proof. We provide a sketch of the full proof in [May09]. Choose m ≈ logN
δ

and
define the collection

hij =
{
xjN if(x)m−i | ∀i, 0 ≤ i < m, 0 ≤ j < δ

}
Evidently, coefficient vectors of hij(xX) form a n = mδ ≈ logN -dimensional lattice
basis such that det(L) ≈ N δm2/2Xn2/2. The enabling condition described above then
becomes N δm2/2Xn2/2 ≤ Nmn. Using n = mδ, we have Xδ2m2 ≤ N δm2 , which gives us
the desired root bound X ≤ N1/δ.

The logN -dimensional lattice has largest entries of bit-size logBmax = O(m logN) =

O(log2N) where Bmax is the largest basis entry.
Together with the runtime of the LLL algorithm, we have that the algorithm runs

in time polynomial of logN and δ. �.

3.1.2 Bivariate case

Given an irreducible polynomial P (x, y) =
∑

i,j pijx
iyj with coefficients in Z and

knowing that it has an integer root, with bounds X,Y , then the goal is to recover
such a root.

Let k be a parameter whose larger size ensures the success of the algorithm. Let
a := P (0, 0) and W = ||P (xX, yY)||∞ where ||P (x, y)||∞ = maxi,j{|pij|}. Generate
n ∈ Z such that W ≤ n < 2W and gcd(a, n) = 1. Define q(x, y) = a−1P (x, y) mod n.

Consider the following set of polynomials S: For all monomials xiyj with 0 ≤
i+ j ≤ k, we have {qij = Xk−iY k−jxiyjq}. For monomials of degree k < i, j ≤ δ + k

we have qij(x, y) = nxiyj. By construction, for an integer root (x0, y0) of P (x), we
have qij(x0, y0) = 0 mod n. Define M as the set of all polynomials in S and let
|M| = m. By construction, |S| = m. Let M1 be a m × m matrix with columns
labelled by each monomial in M and the rows have coefficients of polynomials in S.
Let L1 be the lattice generated by the rows M1. Apply LLL reduction (Theorem
2.2.10) to L1 and let B = {b1 . . . bm} be the reduced lattice basis of L1. Construct
h such that it defines the hyperplane of the lattice containing the small solutions to
P (x, y). Hence, h has small coefficients due to LLL reduction and h(x0, y0) = 0. Akin

22

to Section 3.1.1, we can use the Lemma 3.1.1 to show that if (x0, y0) is sufficiently
small, then h(x0, y0) = 0 over the integers and easily solvable. The following lemma
indicates how small the coefficients of h(xX, yY) must be such that it is no longer a
multiple of P (x, y).

Lemma 3.1.3. ([Cor04], Lem. 3) Let a(x, y) and b(x, y) be two non-zero polynomials
over Z, separately of maximum degree d in x, y, such that b(x, y) is a multiple of
a(x, y) ∈ Z[x, y]. Assume that a(0, 0) 6= 0 and b(x, y) is divisible by a non-zero integer
r such that gcd(r, a(0, 0)) = 1. Then b(x, y) is divisible by r · a(x, y) and

2−(d+1)2 · |r| · ||a||∞ ≤ ||b||

By the above Lemma, h(x, y) and P (x, y) are algebraically independent when

h(xX, yY)||| < 2−ω · (XY)k ·W

Since P (x, y) is by assumption irreducible and h(x, y) is not a multiple of P (x, y), the
resultant polynomial Q(x) = Resultanty(h, P) is non-trivial and Q(x0) = 0. From
this equation, x0 can be recovered using any standard root-finding algorithm (such
as Newton’s method) and finally y0 can be recovered by solving P (x0, y) = 0. The
above discussion can be summarized by the following theorems:

Theorem 3.1.4. ([Cor04], Thm. 4)
Let P (x, y) ∈ Z[x, y] be an irreducible polynomial, of degree δ in each variable. Let

X,Y be upper bounds on the integer solution (x0, y0), and let W = maxi,j{|pijX iY j}.
If for ε > 0 we have that

XY < W 2/3δ−ε

then in time polynomial in (logW, 2δ), one can find all integer pairs (x0, y0) pairs such
that P (x0, y0) = 0 |x0| ≤ X and |y0| ≤ Y .

Theorem 3.1.5. ([Cor04], Thm. 5) Under the hypothesis of Theorem 3.1.4, except
that P (x, y) has total degree δ, the bound is

XY < W 1/δ−ε

3.1.3 Multivariate case

In the case of a multivariate polynomial (for n > 3), there are no rigorous methods
of obtaining all the small roots, and all existing methods rely on heuristics. We shall
illustrate this by trying to extend the above bivariate approach to the trivariate case.

23

Like in Section 3.1.2 the polynomials defining the lattice L1 are of the forms
Xk−iY k−jZk−lxiyjzlq and xiyjztn which evaluate (x0, y0, z0) to 0 over Zn. One must
notice that given a polynomial P (x, y), the procedure in Section 3.1.2 only needs to
compute a polynomial h such that it is algebraically independent from P to be able
to compute the desired root for P . When given a trivariate polynomial P (x, y, z), in
contrast we need to compute two other trivariate polynomials h1 and h2 such that
they are algebraically independent. The heuristic part of this procedure arises from
the difficulty of guaranteeing the algebraic independence in a rigorous manner. This
heuristic nature extends for more than three variables.

3.2 Automated Coppersmith

A significantly improved and optimized formulation of Coppersmith’s method was
proposed in [MN23] where the procedure has been almost entirely automated, thus
negating the necessity of involved lattice constructions in previous formulations which
need to be explicitly fine tuned using ad-hoc techniques (as detailed in the previous
sections). In this method one only requires to specify which monomials are required to
be included in the lattice basis, after which the procedure automatically corresponds
the optimal lattice basis. An implementation of this method is provided by the authors
in [MN23].

Let ZZ(F) denote the set of integer for a set of polynomials F ⊂ Z[x1, . . . , xk],
and similarly ZM,X1,...Xk

denote the modular roots of F bounded by the bounds F .

Definition 3.2.1. LetM be a set of monomials. A monomial order onM is a total
order ≺, which satisfies the following properties:

1. For every λ ∈M, it holds that 1 ≺ λ

2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ in M

For a polynomial f , the leading monomial (with respect to order ≺) is denoted by
LM(f) and the coefficient of the leading monomial is denoted as LC(f). It is evident
that

LM(fg) = LM(f)LM(g)

LC(fg) = LC(f)LC(g)

. We say LC(f) = 1, then we say that f is monic.
Recall, Gröbner bases and their properties from Section 2.3. In the multivariate

setting of Coppersmith, one first computes a := (h1 . . . hk) ⊂ Q̄[x1 . . . xk] (where the
polynomials are similar to h in construction in Section 3.1.1). Assuming the variety of

24

a is zero dimensional i.e, finite solutions of the polynomial system, one can efficiently
obtain ZZ(h1 . . . hk). The authors define the following heuristic, since there are no
provable guarantees:

Heuristic 3.2.2. The polynomials obtained from Coppersmith’s method generate an
ideal of a zero-dimensional variety.

To construct polynomials h1, . . . , hk, the original Coppersmith’s method require a
set of polynomials as input which has to satisfy difficult technical constraints and usu-
ally is constructed in an ad-hoc fashion. The following method provides an automated
approach towards this construction.

3.2.1 Procedure

The core idea involved in this approach is the following definition, which allows one
to replace the lattice-theoretic constructions and replace them with combinatorial
constraints.

Definition 3.2.3. Let M be a finite set of monomials, and let ≺ be a monomial
order on M. A set of polynomials F is called (M,≺)-suitable if:

1. Every f ∈ F is defined over M.

2. For every monomial λ ∈ M there is a unique polynomial f ∈ F with leading
monomial λ (with respect to ≺).

If F is (M,≺)-suitable and λ ∈ M, then we denote by F [λ] the unique polynomial
f ∈ F with leading monomial λ.

The above definition now allows a reformulation of the Coppersmith’s method as
follows:

Theorem 3.2.4. Suppose we are given a modulus M ∈ N, polynomials f1, . . . , fn ∈
ZM [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤ M , where k = O(1). Furthermore,
suppose we are given an integer m ∈ N , a set of monomials M, a monomial order ≺
on M and an (M,≺)-suitable set of polynomials F ⊂ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F) (3.1)

If the conditions

∏
λ∈M

|LC(F [λ])| ≤ M (m−k)|M|∏
λ∈M λ(X1, . . . , Xk)

(3.2)

log(M) ≥ |M ≥ m and |M| ≥ k hold, then we can compute all r ∈ ZM,X1,...,Xk
(f1, . . . fn)

in time polynomial in deg(F) · log(M) under Heuristic 3.2.2 for k > 1.

25

The proof of this theorem is provided in [MN23]. The general strategy followed
is to use Lemma 3.1.1, and proceed similarly as in the above Coppersmith-style the-
orems. The algorithm behind Theorem 3.2.4 is as follows:

Algorithm 4 Coppersmith’s method
Input: Integers M,m ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk], bounds 0 ≤

X1, . . . , Xk ≤M , set of monomials M, monomial order ≺ on M, and a (M,≺)-
suitable set of polynomials F ⊆ ZMm [x1, . . . , xk], satisfying the constraints of
Theorem 3.2.4.

Output: All r ∈ ZM,X1,...,Xk
(f1, . . . fn)

1: Construct |M| × |M| basis matrix B, with coefficient vectors of the polynomials
F [λ](x1X1, . . . , xkXk) as columns.

2: LLL-reduce B.
3: Interpret the first k column of the resulting matrix as coefficient vectors of poly-

nomials hi(X1x1, . . . , Xkxk).
4: Compute the Gröbner basis of (h1(x1, . . . , xk), . . . hk(x1, . . . , xk)) .
5: return all r ∈ ZM,X1,...,Xk

(f1, . . . fn)

3.2.2 Parameter choices

We now show below the procedure of choosing an optimal F in an automated way,
once M,m and ≺ are fixed. We also give methods to choose M,m,≺.

Choosing ≺.

The choice of ≺ is usually of secondary importance in Coppersmith’s method, and
simply choosing the lexicographic order ≺lex will suffice in most applications.

Choosing m and M.

Instead of choosing one fixed m and M, we define an increasing sequence M1 ⊂
M2 ⊂M3 ⊂ . . . of sets of monomials. Define

Mi :=
{
λ |λ is a monomial of f j11 . . . f jnn , 0 ≤ j1, . . . , jn ≤ i

}
mi := i · n

This choice can be further optimized by the choice of the polynomials f1, . . . , fn. The
condition imposed by Equation 3.2 entails that the larger Mi the better Copper-
smith’s method performs.

26

Choosing F .

After fixingM,≺ and m. The set F then has to satisfy the following three conditions:

1. It has to be the (M,≺)-suitable

2. It has to satisfy Equation 3.1

3. It has to satisfy Equation 3.2

To satisfy Equation 3.1, which is to simply construct F the shift-polynomials of
the following form:

p[j1,...,jk,i1,...,in] := xj11 . . . x
jk
k · f

i1
1 . . . f inn . . .Mm−(i1+···+in) (3.3)

For any appropriately chosen j1, . . . , jk, i1, . . . , in ∈ N, where i1 + · · · + in ≤ m.
Since for any r ∈ ZM,X1,...,Xk

(f1, . . . , fn) we have

f i11 (r) . . . f inn (r) ≡ 0 mod Mm

The resulting set F satisfies Equation 3.1.
For satisfying Equation 3.2, notice that the right hand side of it does not depend

on F , and it simply requires the product of the leading coefficients of the polynomials
in F is smaller than some constant. Assuming fi’s are monic, it follows that the
leading coefficient of the shift polynomial is

LC(p[j1,...,jk,i1,...,in]) =Mm−(i1+···+in)

Hence the larger the sum i1+· · ·+in gets, the smaller gets the leading coefficient of the
corresponding shift-polynomial. Thus to satisfy Equation 3.2, the shift polynomials
with as large i1 + · · ·+ in.

Finally to ensure that F is (M,≺)-suitable, include every monomial λ ∈ M one
shift-polynomial p[j1,...,jk,i1,...,in] in F such that

1. the leading monomial of p[j1,...,jk,i1,...,in] is λ, and

2. p[j1,...,jk,i1,...,in] is defined over M.

From the properties of LM, it follows easily that the shift polynomials which satisfy
the above conditions are of the form:

f[λ,i1,...,in] :=
λ

LM(f1)i1 . . . LM(fn)in
· f i11 . . . f inn ·Mm−(i1+···+in) (3.4)

such that LM(f1)
i1 . . . LM(fn)

in divides λ, and f[λ,i1,...,in] is defined over M.

27

Thus to construct an optimal set, we simply have to enumerate all such shift-
polynomials f[λ,i1,...,in] and then include for every λ ∈ M such that the choice maxi-
mizes the sum i1 + · · ·+ in.

The above idea is formalized in the following algorithm:

Algorithm 5 Constructing an optimal set F
Input: Set of monomialsM, monomial order ≺ onM, monic polynomials f1, . . . , fn,

and an integer m ∈ N.
Output: (M,≺)-suitable set of shift-polynomials F , satisfying Equation 3.1, and

minimizing the left hand side in Equation 3.2.
1: F := ∅
2: for λ ∈M do
3: Enumerate all shift-polynomials f[λ,i1...in] such that LM(f1)

i1 . . . LM(fn)
in di-

vides λ, and f[λ,i1,...,in] is defined over M.
4: Among all such f[λ,i1,...,in] pick one that maximizes i1 + · · ·+ in and include it

in F
5: end for
6: return F

28

Chapter 4

Isogeny-based cryptosystems

In this chapter we shall be presenting the SIDH protocol, along with the three counter-
measures M-SIDH, FESTA and POKÉ. For each cryptosystem, we first describe the
protocol specifications, then the security analysis and known attacks against them,
and finally parameter choices for each protocol. The protocol descriptions are sourced
from the original papers as cited in the respective sections.

4.1 SIDH: Supersingular Isogeny Diffie Hellman

Analogous to the Diffie Hellman Key Exchange protocol, the Supersingular Isogeny
Diffie Hellman (SIDH) protocol is based on key exchange construction which was
introduced by [JD11]. It was one of the leading contenders in the NIST Post-Quantum
Cryptography Standardisation, and made it to the 4th round, until 2022 when it was
completely broken by a series of attacks [CD22, MM22, Rob22]. While the underlying
assumption turns out to be insecure, SIDH was indeed a preferred candidate due to
its compact secret and public key sizes. The complete description can be found in the
NIST submission of SIDH [Jao22].

4.1.1 Protocol

The SIDH protocol is a DH like key-exchange that uses torsion information to com-
plete the following diagram:

(E0, PA, QA, PB, QB) (EA, φA(PB), φA(QB))

(EB, φB(PA), φB(QA)) EAB ∼= EBA

29

where A,B represents curves, torsion points for Alice and Bob respectively, and
EAB ∼= EBA represents the shared secret.

The protocol specification of SIDH is as follows:
Public parameters: Let p = 2ea3eb − 1 be a prime for integers ea, eb. The

starting curve is a supersingular curve E0/Fp2 , public basis points of torsion group
〈PA, QA〉 = E[2ea] and 〈PB, QB〉 = E[3eb].

Key generation: A supersingular isogeny key pair consists of a secret key ski
and a public key pki with i ∈ {a, b}, denoting a for Alice and b for Bob, which is an
integer sampled from {0, 1, . . . , 2ei−1} (denote this space as Ki). For efficiency reasons
we represents the points P,Q using the three coordinates xP , xQ, xR where R = P−Q.
The public key for both parties is given by Algorithm 6:

Algorithm 6 SIDH.isogeni computing public keys
Input: A secret key ski
Output: A public key pki

1: Set xS ← xPi+[ski]Qi

2: Set (x1, x2, x3)← (xPm , xQm , xRm)

3: for j = 0 downto ei − 1 do
4: Compute the x portion for a 2-isogeny . Replace 2 with 3 in this loop if i = b

φj : Ej → E ′

(x,_) 7→ (fj(x),_)

such that kerφj = 〈[2ei−j−1]S〉, where S is a point on Ei with x-coordinate xS
5: Set Ei+1 ← E ′

6: Set xS ← fj(xs)

7: Set (x1, x2, x3)← (fi(x1), fi(x2), fi(x3))

8: end for
9: return pki = (x1, x2, x3)

Shared key establishment: Two parties, Alice and Bob denoted by i = {a, b}
establish their shared keys in the Algorithm 7.

Encryption: Using the above techniques, we define a PKE. The encryption in
the PKE is performed by the Algorithm 8, where F is a function that maps the shared
secret j to bitstrings.

Decryption: The decryption method is given by the Algorithm 9.
The SIDH protocol’s security is guaranteed by the following problem:

30

Algorithm 7 SIDH.isogexi shared key establishment
Input: A secret key ski and a public key pki
Output: A shared secret j(E ′

ei
)

1: Compute E ′
0 from pki

2: Set xS ← xPi+[ski]Qi

3: for j = 0 downto ei − 1 do
4: Compute the x portion for a 2-isogeny . Replace 2 with 3 in this loop if i = b

φj : Ej → E ′

(x,_) 7→ (fj(x),_)

such that kerφj = 〈[2ei−j−1]S〉, where S is a point on Ei with x-coordinate xS
5: Set Ei+1 ← E ′

6: Set xS ← fj(xs)

7: end for
8: return j(E ′

ei
)

Algorithm 8 SIDH.Enci encryption algorithm
Input: A public key pkb, m ∈M, r ∈ Ka
Output: Ciphertexts (c0, c1)

1: Set ska ← r

2: Set c0 ← isogena(ska)
3: Set j ← isoexa(pkb, ska)
4: Set h← F (j)

5: Set c1 ← h⊕m
6: return (c0, c1)

Algorithm 9 SIDH.Deci decryption algorithm
Input: skb, (c0, c1)
Output: m

Set j ← isoexb(c0, skb)
Set h← F (j)

Set m← h⊕ c1
return m

31

Problem 4.1.1. Let E0/Fp2 be a supersingular curve with p = 2ea3eb−1, set E0[2
ea] =

〈P,Q〉. Let φ : E0 → E ′ be an isogeny of degree 3eb and let P ′ = φ(P), Q′ = φ(Q).
Given E0, P,Q,E

′, P ′, Q′, compute the isogeny φ.

In the next section we shall show how this problem has been solved in polynomial
time.

4.1.2 SIDH attack

In 2022, [CD22] published the first attack in which all proposed SIKE parameter sets in
[Jao22], were broken. The same attack strategy had also been discovered parallelly by
the authors of [MM22], however both these attacks could be prevented by clever choice
of parameters which albeit would render the protocol in a much clumsy state. Robert
utilized both these attacks in [Rob22] and developed an unconditional polynomial-
time attack on all previously proposed SIDH variants. For exposition’s sake we shall
provide a sketch of Robert’s version of these attacks, as described in [Gal22].

Robert’s attack

Let E0 be the initial curve, and we have the isogenies φA : E0 → EA and φB : E0 → EB

such that degφA = 2ea and degφB = 3eb . Assume 2ea > 3eb .
The previous torsion-point attacks [Pet17, dQKL+21] incorporates the idea that

if one can compute φB on points of order 3eb then computing discrete logarithms one
can recover kerφB can be recovered. Robert’s attack follows the same idea.

Denote c = 2ea − 3eb . The following theorem, tells us that c can be written as a
sum of four squares.

Theorem 4.1.2. (Lagrange)
Every positive integer is a sum of four integer squares.

We assume the simpler case where we take that all prime factors of the square free
part of c are congruent to 1 mod 4, in which case we write c = a21 + a22, with integers

a1, a2. Let M =

(
a1 a2

−a2 a1

)
. Then MTM = (a21 + a22)Id2 = c · Id2 where Id2 is the

2× 2 identity matrix. Thus, M defines an isogeny α : E×E → E×E for any elliptic
curve E such that α(X,Y) = ([a1]X + [a2]Y, [−a2]X + [a1]Y). Here the dual isogeny
corresponds to MT such that α̂α = [c] as a map from E2 to itself.

We can extend the secret isogeny φB : E0 → EB to E2
0 → E2

B by defining
φB(X,Y) = (φB(X), φB(Y)). Then φB commutes with α, since φB is a group ho-
momorphism. On the 4-dimensional abelian variety A = E2

0 × E2
B, one can define

32

an isogeny F by F =

(
α φ̂B

−φB α̂

)
. The dual isogeny is F̂ =

(
α̂ −φ̂B
φB α

)
, such

that F̂F = (c + 3b)2eAId4 where Id4 is the identity matrix. Now, from the torsion
points in SIDH, we know how φB acts on E0[2

ea]. Since φ̂BφB = [3eb], we can also
compute how φ̂B acts on EB[2ea]. Hence we can compute how F acts on A[2ea]. Since
kerF ⊆ A[2ea], we can compute kerF . Using higher dimensional methods, we can
compute the isogeny F and evaluate it on any point, and hence compute φB on E0[3

b],
and break SIDH.

The attack in full generality as described in [Rob22] over an eight dimensional
abelian variety E4

0 × E4
B. The complexity of this attack is in time polynomial of

(log q, logn, l) where q is the base-field cardinality, n is the isogeny degree, and l is
the largest prime factor of n. However, the complexity remains exponential to the
dimension of the elliptic-curve-product, which assigns a large constant factor to the
attack cost.

An alternate exposition of these attacks can be found in [Pan22].

4.2 M-SIDH: Masked Supersingular Isogeny Diffie
Hellman

The Masked Supersingular Isogeny Diffie Hellman (M-SIDH) by Fouotsa et.al. [FMP23]
is one of the first countermeasures against the attacks on SIDH, which crucially in-
volve exploiting revealed images of torsion points under the secret isogeny. The crux
of this protocol is to partially hide the torsion information by scaling the same with
carefully chosen scalars. While the article [FMP23] introduces two protocols, namely
M-SIDH and MD-SIDH, in which the latter involves hiding the degree of the secret
isogeny rather than the torsional information, the authors have shown that the two
protocols reduce to one another i.e, an instance of one is also an instance of another,
and attacks on M-SIDH can be ported to MD-SIDH and vice-versa. In this thesis
we shall be focusing on M-SIDH and it’s cryptanalysis due to the presence of hidden
torsion information, a technique also adapted in later cryptosystems.

4.2.1 Protocol

This protocol is a similar instantiation of the SIDH protocol with the major difference
that the direct images φ(P), φ(Q) of torsion basis points P,Q under the secret isogeny
φ is not available to adversaries however the key exchange is still completed.

This can be achieved by scaling the images φ(P), φ(Q) by a random integer

33

α ∈ Z/BZ×, that is instead of revealing φ(P), φ(Q) in the public key, one reveals
[α]φ(P), [α]φ(Q). However, using Lemma 2.1.23 one can recover α2 degφ, from which
one can derive α2 mod B for a smooth prime B. Taking a square root α0 of α, one can
recover [αα−1

0]φ(P), [αα−1
0]φ(Q) where (αα−1

0)2 = 1 mod B. Hence one can sample α
from the following set:

µ(B) =
{
x ∈ Z/NZ | x2 = 1 mod N

}
(4.1)

Since the security against the SIDH attacks relies on hiding of torsional informa-
tion, it is imperative that the adversary cannot recover the scalar α. Hence the degree
of the secret isogeny is chosen such that there are an exponential number of square
roots of 1 mod B. Now we describe the protocol:

Public Parameters: Let λ be the security parameter and t = t(λ) ∈ N be an
integer depending on λ. Let p = ABf − 1 be a prime such that A =

∏t
i=1 `i and

B =
∏t

i=1 qi are coprime integers `i, qi are distinct small primes, A ≈ B ≈ √p and f

is a small cofactor. Let E0 be a supersingular curve over Fp2 . Let E0[A] = 〈PA, QA〉
and E0[B] = 〈PB, QB〉. The public parameters are (E0, p, A,B, PA, QA, PB, QB).

Key Generation (Alice): Alice uniformly samples two random integers α $←−
µ(B) and a $←− Z/AZ respectively. Alice computes E0

φ−→ EA = E0/〈PA+ [a]QA〉. Her
public key is the tuple pkA = (EA, Rb = [α]φA(PB), Sb = [α]φA(QB)) and her secret
key skA = a.The integer α is deleted post key generation.

Key generation (Bob): Analogously, Bob uniformly samples two random in-
tegers β $←− µ(A) and b

$←− Z/BZ respectively. Similarly as above Bob computes
E0

φ−→ EB = E0/〈PB + [b]QB〉. Bob’s public key pkA = (EA, Ra = [β]φB(PA), Sa =

[β]φB(QA)) and his secret key is skB = b. The integer β is deleted post key generation.
Shared Key: After receiving pkB, Alice checks if eA(Ra, Sa) = eA(PA, QA)

B,and
she aborts if not. Alice computes EB

φ′A−→ EBA = EB/〈Ra + [a]Sa〉. Alice’s shared
key is j(EBA). Similarly, Bob checks the pairing eB(Rb, Sb) = eB(PB, QB)

A, if not
he aborts. Bob computes EA

φ′B−→ EAB = EA/〈Rb+[b]Sb〉. Bob’s shared key is j(EAB).

The underlying hard problem which guarantees security of the M-SIDH key ex-
change protocol is as follows:

Problem 4.2.1 (Masked Torsion isogeny problem). Let A =
∏t

i=1 `i and B =∏t
i=1 qi be two smooth co-prime integers, let f be a small cofactor such that p =

ABf − 1 is prime, with A ≈ B. For a supersingular elliptic curve E0/Fp2, let
E0[B] = 〈P,Q〉. Let φ : E0 → E be a uniformly random A-isogeny and let α be a
uniformly random element of µ(B). Given E0, P,Q,EA, [α]φ(P), [α]φ(Q), compute φ.

34

For small values of t, it is evident that Problem 4.2.1 is not hard. Since we want
exponential roots of unity modulo B (and correspondingly A), it may seem fine to set
t = λ such that there shall be 2λ square roots of unity. However in as we shall see in
subsection 4.2.2, such a choice does not yield security and we need t to be larger.

4.2.2 Security Analysis

In this section we first list out the attacks to which M-SIDH is immune as listed out
in [FMP23], and following that we sketch an attack presented in [CV23] which breaks
some special cases M-SIDH and FESTA (Section 4.3).

Guessing enough torsion point information

In the above protocol description, Bob’s isogeny has degree B ≈ A, then one only
needs the exact images of the

√
B ≈

√
A torsion points to run the [CD22, MM22,

Rob22] attacks. Assume we are provided with the images of the A-torsion points such
that A = 1 . . . t.

Let n ≥ 1 be the largest index such that
√
B ≤ ln . . . lt. Let N = ln . . . lt. Then

Bob’s secret isogeny φB can be recovered from its action on the N -torsion points.
From the action of [α] ◦ φB on the A-torsion points, one can deduce the action of
[α] ◦ φB on the N -torsion points. To apply the SIDH attacks successfully, one needs
to know the secret square root of unity α. Since N has t− n + 1 factors, then there
at most 2t−n+1-factors, then there are maximum 2t−n+1 square roots of unity modulo
N . One can hence try all these square roots of unity till one successfully applies the
SIDH attacks.

The complexity of this attack is given by the following theorem:

Theorem 4.2.2. [FMP23, Thm.7,8]
[FMP23, Algorithm 1] is correct and runs in time O(2t−n+1) and O(2(t−n+1)/2)

using a classical and quantum computer respectively, such that t− n+ 1 ≤ t/2.

Lollipop attack

While [CD22, MM22, Rob22] attacks seem to require the exact knowledge of torsion
point images, the older torsion point attacks [BKM+21, FP22] seem to need these
images upto a constant, although A is required to be much larger than B. Let E ∈
End(E0) : (x, y)→ (−x, iy) be a non-trivial automorphism of E0 and let ψ := φ◦E ◦ φ̂
be the “lollipop endomorphism” constructed in Petit’s attack [Pet17]. As images of
torsion points under φ are provided upto a square root of unity α mod A, then we

35

have that
[α]φ ◦ E ◦ [̂α]φ = [α2] ◦ φ ◦ E ◦ φ̂ = [α2] ◦ ψ

Hence from the action of [α]φ on the A-torsion, one can recover [α2] ◦ ψ on the
A-torsion. Since α2 = 1 mod A, then the images of ψ are exact. Moreover as ψ has
degree B2 ≈ A2 and images of the torsion point of order A are known, one can apply
[Rob22] to ψ instead of φ. After recovering ψ, one recover φ efficiently.

Fououtsa-Petit adaptive attack

This attack [FP22] consists of actively transforming a balanced SIDH instance (A ≈
B) into an imbalanced one i.e, B < A∗ = NA where N ≈ p, then running the torsion
attacks on the imbalanced SIDH where the secret isogeny has degree B and the torsion
points have order A∗ = NA, to recover the secret isogeny. In [FP22, Section 3.2], the
authors show that the torsion attacks even work while the torsion point images are
scaled with an unknown scalar. To recover an isogey φ : E → E ′ from its action
on large enough torsion points, the attack uses the torsion point information and a
suitable endomorphism θ of E to compute the endomorphism ψ = φ ◦ θ ◦ φ of E ′ and
techniques from [Pet17] are used to recover φ.

[CV23] attack

The primary security argument for M-SIDH (and later FESTA) is that the polynomial
time attack on SIDH no longer applies since the exact images of torsion points are not
revealed, hence it is impossible to recover φ : E0 → E using the same attacks. The
authors of [CV23] instead, recovers a related isogeny in polynomial time, in particular
which does not map E0 → E. This attack is a generalisation of the lollipop attack
(Section 4.2.2). Since we do not know the exact images of the torsion points due to
the presence of the scalars, we construct a new isogeny ψ (related to φ) from E to
some other curve E ′ that is oblivious to the unknown scalars.

Assume E0 is Fp rational. Then consider the following diagram:

E0

E(p) EA

φ(p) φ

π

Here E(p) denotes the Frobenius conjugate of E i.e, the curve obtained by raising
all the coefficients to the p-th power, and π : E → E(p), is the Frobenius isogeny.
The isogeny φ(p) is the Frobenius conjugate of φ and satisfies φ(p) ◦ π0 = π ◦ φ with
π0 being the Frobenius endomorphism on E0. Now, consider the isogeny ψ = φ(p) ◦ φ̂

36

Table 4.1: Suggested M-SIDH parameters for 128,192, 256 bits security

AES NIST p (in bits) secret key public key compressed pk

128 level 1 5911 ≈ 369 bytes 4434 bytes ≈ 2585 bytes
192 level 3 9832 ≈ 586 bytes 4103 bytes ≈ 2585 bytes
256 level 5 13000 ≈ 812 bytes 9750 bytes ≈ 5687 bytes

from E → E(p) of degree d2. Denote with T = λφ(P) and S = λφ(Q), the points
revealed by M-SIDH, then we can show that

ψ

(
S

T

)
= d ·M−1

π0
· π

(
S

T

)
(4.2)

where Mπ0 is such that

π0

(
S

T

)
=Mπ0

(
S

T

)

where it is the transpose of the matrix of π0 acting on E0[N] with respect to the
basis {P,Q}. Since all terms in Equation 4.2 is known, we can compute the image of
S, T under ψ, and then apply the SIDH attack to recover ψ since in M-SIDH we have
N > d and thus N2 > deg(ψ) = d2 (See Theorem [Rob22, 6.4]). If ψ is cyclic, then
we can recover the kernel of φ̂ since in this case ker(φ̂) = ker(ψ)[d]. See [CV23] for
the full discussion on this attack.

4.2.3 Parameters

Recall that the M-SIDH primes are of the form p = ABf − 1 where A = l1 . . . lt and
B = q1 . . . qt are coprime integers and li, qi are distinct small primes, A ≈ B ≈ √p and
f is a small cofactor. Let λ be the security parameter. Then for quantum security one
needs t−n+1

2
≥ λ, where n is the largest integer satisfying

√
B ≤ ln . . . lt. To generate

the public parameters of M-SIDH for AES-λ security (i.e, classical λ bits security and
quantum λ/2 bits security). Given λ, one samples 2t smallest primes for t ≥ 2λ, we
partition them into two sets of equal size, we use the first set to get A and we use
the second to get B, such that A ≈ B. We then check the value t − n + 1 and if it
is less than λ, we restart with a larger t. If not, we choose a cofactor f such that
p = ABf − 1 is prime. The key sizes for AES-128,192 and 256 security levels are
given in Table 4.1.

37

4.3 FESTA: Fast Encryption from Supersingular
Torsion Attacks

The protocol FESTA: Fast Encryption from Supersingular Torsion Attacks by [BMP23]
is a countermeasure to the SIDH attacks, which is a public key exchange protocol.
The core idea is to develop a trapdoor function i.e, a function that is easy to compute
in one direction, but computationally hard to invert in the other direction without
access to some additional information. In this case, the SIDH attacks are employed to
invert the function, which is then used to construct a PKE. While this protocol does
not involve a Diffie-Hellman key exchange, like M-SIDH and SIDH, the underlying
hard problem 4.3.2 which guarantees security of the PKE still relies on the hiding of
the image of the torsion points under the secret isogeny.

4.3.1 FESTA trapdoor function

Definition 4.3.1. Family of trapdoor functions Let X and Y be two finite sets. A
family of trapdoor functions is a triple of algorithms (KeyGen, f, f−1) such that

1. KeyGen(λ) $←− (sk, pk): A probabilistic key generation algorithm that outputs a
secret and public key for a given security parameter λ.

2. f(pk, x) → y: is a deterministic algorithm that, on input a public key and
x ∈ X , outputs y ∈ Y .

3. f−1(sk, y) → x: is a deterministic algorithm that on input a secret key and
y ∈ Y , outputs x ∈ X .

Trapdoor functions are correct, that is ∀(pk, sk) and ∀x ∈ X we have f−1(sk, f(pk, x)) =
x. Such functions are also one-way, that is given a valid output y computed with
(pk, sk), any probabilistic-polynomial time adversary cannot compute the input x
such that f(x, pk) = y with probability greater than negl(λ).

Let E0 be a supersingular elliptic curve defined over Fp2 and 〈Pb, Qb〉 = E0[2
b].

The public key of each trapdoor function is generated by computing a secret dA
isogeny from φ : E0 → EA and consist of the curve EA, together with the image of
torsion points, scaled by a matrix from the matrix set Γ ∈ Mb defined over Z/2bZ.

We can denote the same as Apk = (EA, RA, SA) where

(
RA

SA

)
= Γ ·

(
φ(Pb)

φ(Qb)

)
. Let

pk = (EA, RA, SA). Then we define the computation of the trapdoor function f in
the following algorithm:

38

Algorithm 10 f(m = (〈K1〉, 〈K2〉,Γ′), pk) trapdoor function
Input: Cyclic groups 〈K1〉 ⊂ E0[d1] and 〈K2〉 ⊂ EA[d2] of order d1 and d2, and

Γ′ ∈Mb.
Output: (E1, R1, S1, E2, R2, S2)

1: Compute the d1 isogeny φ1 : E0 → E1 having 〈K1〉 as kernel.
2: Compute the d1 isogeny φ1 : EA → E2 having 〈K2〉 as kernel.
3: Acting with scalar multiplication compute(

R1

S1

)
= Γ′ ·

(
φ1(Pb)

φ1(Qb)

) (
R2

S2

)
= Γ′ ·

(
φ2(RA)

φ2(SA)

)

4: return (E1, R1, S1, E2, R2, S2)

Let TorAtk denote the attack procedure for breaking Problem 4.1.1 defined in
Section 4.1.1 i.e, given points P ′ = φ(P) and Q′ = φ(Q), for some unknown d-
isogeny φ : E → E ′, such that 〈P,Q〉 = E[2b], TorAtk(E,P,Q,E ′, P ′, Q′, d) outputs
the isogeny φ. In order to invert the trapdoor function we would like to scale the
torsion points R2, S2 on E2 to undo the Γ-scaling. However the public points on E2

have already been scaled by Γ′, hence we need Γ,Γ′ to commute, and be invertible.
The authors’ mention in the article that in practice the setMb could be unimodular
diagonal or circulant matrices1 and the choice should not affect security. However
in Chapter 6 we see that for torsion groups of odd prime power order, the usage of
circulant matrices reduces to the case of usage of diagonal matrices but in the case of
order 2b we show that the choice of Mb as circulant matrices over Z/2bZ would not
reduce to that of the diagonal case, which might lead to potential insecurity.

The procedure to invert the trapdoor function f is as follows:
The following problem guarantees the security of the FESTA trapdoor function,

on the assumption of hardness extracting the trapdoor information from the public
parameters of the function.

Problem 4.3.2. Computational isogeny with scaled torsion (CIST)
Let φ : E0 → E1 be an isogeny of smooth degree d between supersingular elliptic

curves defined over Fp2, and let n be a smooth integer coprime with d.
Given the curves E0 with a basis P0, Q0 of E0[n] and the curve E1 with a basis
Γ(φ(P0), φ(Q0))

T where Γ
$←−Mn, compute the isogeny φ.

In the above problem, the output of the FESTA one-way function produces two
pairs of curves and torsion points scaled by the same matrix, the correlated scaling

1barring the choice of trivial matrices when sampling from B

39

Algorithm 11 f−1(m = (E1, R1, S1, E2, R2, S2) trapdoor inversion algorithm
Input: A tuple (E1, R1, S1, E2, R2, S2), the trapdoor (Γ ∈Mb, φA : E0 → EA)

Output: (〈K1〉〈K2〉,Γ′) such that f(m = (〈K1〉, 〈K2〉,Γ′), pk) =

(E1, R1, S1, E2, R2, S2)

1: Recover R′
2, S

′
2 by inverting Γ and acting with scalar multiplication(

R′
2

S ′
2

)
= d1Γ

−1 ·

(
R2

S2

)

2: Compute ψ = φ2 ◦ φA ◦ φ̂1 : E1 → E2 via TorAtk(E1, R1, S1, E2, R
′
2, S

′
2, d1dAd2).

3: Recover 〈K1〉 of the d1-isogeny φ1 : E0 → E1 from ψ using φA
4: Recover 〈K2〉 of the d2-isogeny φ2 : EA → E2 from ψ using φA
5: Compute Γ′ such that (

R1

S1

)
= Γ′ ·

(
φ1(Pb)

φ1(Qb)

)
6: return (〈K1〉, 〈K2〉,Γ′)

might can potentially make invertibility easier. To guarantee the one-wayness of the
FESTA function, the following problem is introduced.

Problem 4.3.3. Computational isogeny with double scaled torsion (CIST)2

Let φ : E0 → E1 and φ : E ′
0 → E ′

1 be isogenies of smooth degrees d and d′

respectively between supersingular elliptic curves defined over Fp2, and let n be a
smooth integer coprime with d, d′, and let Γ $←−Mn

Given the curves E0, E1, E
′
0, E

′
1 with a basis P0, Q0 of E0[n] and basis P ′

0, Q
′
0 of E ′

0[n]

and the points Γ(φ(P0), φ(Q0))
T and Γ(φ′(P ′), φ′(Q′))T where Γ

$←−Mn, compute the
isogenies φ and φ′.

Having introduced the necessary computational assumptions we can prove the
one-wayness of the FESTA trapdoor function.

Theorem 4.3.4. The function f : Z/d1Z× Z/d2Z×Mb → S, defined in Algorithm
10, is a one-way function, assuming the hardness of Problem 4.3.2 for d = dA and
n = 2b and of Problem 4.3.3 for d = d1, d

′ = d2 and n = 2b.

Proof. In the definition of one-wayness, the attacker A receives the FESTA public
parameters including the dA isogenous curvesE0 andEA and outputs E0, E1, P0, P1, Q1

as computed by Algorithm 10 and produces φ1, φ2 and the matrix Γ′.
Let us replace EA with a random starting curve. An attacker that can distinguish
between the two cases, can also be a distinguisher for the decisional version of Prob-
lem 4.3.2. If any adversary can invert the FESTA trapdoor function when the curves

40

E0 and E1 are randomly generated, it can be used to solve Problem 4.3.3, since the
input and outputs are the same. �

4.3.2 Protocol

Using the trapdoor function defined in the above section we have the following public-
key exchange protocol.

Public Parameters: The public parameters involved here are a prime p, the
curve E0, the values d1, d2, dA, b as defined above, and a description of the set Mb,
which in our case is the set of invertible diagonal matrices. We also have two random
oracles, G : Z/d2Z×Mb → Z/d1Z and H : Z/d1Z→ Z/d2Z×Mb.

Encryption: We first evaluate G at a randomly sampled input (r, R), and use
it’s output (along with message m) the kernel of the isogeny φ1. The isogeny φ2 and
the matrix Γ′, which are the remaining part of the input of the trapdoor function and
deterministically derived from the randomness (r, R) and the kernel φ1 via the oracle
H. The output of f is the ciphertext. This is formalized in Algorithm 12.

Algorithm 12 FESTA.Enc(pk,m) encryption algorithm
Input: The public key pk = (EA, RA, SA) and the message m to be encrypted.
Output: Ciphertext (E1, R1, S1, E2, R2, S2)

1: Sample r $←− Z/d2Z and R
$←−Mb.

2: Write m′ = m||0k mod d1 and compute s = m′ +G(r, R).
3: Write (x,X) = H(s) and compute s = m′ +G(r, R).
4: Compute ct = f(s, t, T, pk) . Using Algorithm 10
5: return (E1, R1, S1, E2, R2, S2)

Decryption: The trapdoor information is used to recover the isogenies φ1, φ2 and
the matrix Γ′, from which the message can be extracted, similarly as in the trapdoor
inversion algorithm. This is formalized in Algorithm 13.

4.3.3 Security Analysis

In this section we are going to list out some the possible attacks against the FESTA
protocol.

First, we consider the standard SIDH attack, considering [Rob22] attack i.e, given
a d-isogeny φ, it is possible to recover φ if the image of the N -torsion is available, pro-
vided N2 > 4d. While FESTA does not reveal the direct images, one can recover the
determinant of the scalar matrix through pairing computation e([α]φ(P), [β]φ(Q)) =

e(P,Q)αβ degφ. and P,Q, degφ are known. This information can be used to reduce one

41

Algorithm 13 FESTA.Dec(sk, ct) decryption method
Input: The secret key sk = (Γ, φA) and the ciphertext (E1, R1, S1, E2, R2, S2).
Output: The decrypted message m or ⊥ on failure.

1: Compute (s, t, T) = f−1(sk, ct) . Using Algorithm 11
2: Write (x,X) = H(s) and compute r = t− x,R = X−1T .
3: Compute m′ = s−G(r, R) and write m||mk = m′ where |mk| = k.
4: if mk = 0k then
5: return m

6: else
7: return ⊥
8: end if

variable among the unknowns: given P ′ = [α]φ(P), Q′ = [β]φ(Q), and αβ, scaling Q′

by (αβ)−1 mod N yields the point Q′′ = [1/α]φ(Q). Thus P ′ and Q′′ are the images
of P,Q scaled by a unimodular determinant. However this does not affect security
majorly as α is sampled from an exponentially large set (that is, its security is akin
to that of M-SIDH as we previously discussed).

The other major attack against the FESTA protocol is the [CV23] attack, as
outlined in Section 4.2.2. The same attack follows and breaks FESTA for curves
defined over Fp with the minor difference that Equation 4.2 is generalized to

ψ

(
S

T

)
= d ·D ·M−1

π0
·D−1 · π

(
S

T

)

with D is the diagonal matrix with scalars α, β as entries. Since α 6= β, however
the above equation does not reduce to Equation 4.2, unless the expression D ·M−1

π0
·

D−1 reduces to M−1
π0

, i.e, until Mπ0 is a diagonal matrix, and its entries P,Q are
eigenvectors. Assuring that condition, we can proceed with the attack outlined in
Section 4.2.2.

4.3.4 Parameters

For FESTA, the authors recommend m1, d1,m2, d2, dA,1, dA,2, to be odd, so that the
isogenies have degree co-prime with the torsion points order. The isogeny degrees
d1, dA = dA,1dA,2 and d2 are pairwise coprime and sufficiently long, log d1, log dA, log d2 ≥
2λ, to prevent meet-in-the-middle and torsion-guess attacks. The number of solutions
and the protocol efficiency depend crucially on the smoothness of degrees of the isoge-
nies involved. Let us denote our smoothness bound as B. Let c be a positive integer
such that the number T := 2c − 1 is B-smooth. We begin by finding primitive solu-

42

tions for the equation x2 + y2T = 2b. Given a solution (x, y) for some even b > 0, we
have

y2T = (2b/2 − x)(2b/2 + x)

Define T1 to be the B-smooth part of 2b/2 − x and T2 to be the B-smooth part of
2b/2 + x. In particular we have

m2
1T1 +m2

2T2 = 2b/2+1

The authors recommend T1T2 > 26λ, we define di to be the smoothest factor of Ti
such that di ∼ 22λ for i = 1, 2. Additionally define dA,i to be the smoothest part of
Ti/di such that dA,1dA,2 > 22λ. Thus we have found a valid set of parameters required
for FESTA.

The authors provide the following parameter set for AES-128 bits security:

b :=632,

d1 :=(33 · 19 · 29 · 37 · 83 · 139 · 167 · 251 · 419 · 421 · 701 · 839 · 1009 · 1259 · 3061 · 3779)2,

d2 :=7 · (52 · 7 · 11 · 13 · 17 · 41 · 43 · 71 · 89 · 127 · 211 · 281 · 503 · 631 · 2309 · 2521 · 2647 · 2729)2,

dA,1 :=(59 · 6299 · 6719 · 9181)2,

dA,2 :=(3023 · 3359 · 4409 · 5039 · 19531 · 22679 · 41161)2,

m1 :=1492184945093476592520242083925044182103921,

m2 :=25617331336429939300166693069,

f :=107.

The values d1, d2 are 212-smooth, while dA = dA,1dA,2 is 216-smooth. The corre-
sponding prime, defined as p = 2bd1(dA,1dA,2)d2f − 1 is 1292-bit long. The public key
and ciphertext sizes are, respectively, 561 and 1,122 bytes. The same procedure can
be used while producing parameter sets for higher AES security levels.

The authors recommend compressing torsion points by expressing them in terms of
linear coefficients of canonical bases, as proposed in [NR19], to reduce the bandwidth
of FESTA. Since unlike in SIDH, the protocol needs exact torsion images. This means
the points cannot be scaled, and their representation requires four coefficients of size
equal to their order.

4.4 POKÉ: POint-based Key Exchange

The POKÉ protocol [BM24] is a recent isogeny based public-key exchange protocol,
which also is a countermeasure to the SIDH attacks. The PKE design involves using

43

two different isogeny representations, the first of them being the torsion point repre-
sentation where an isogeny is represented by two sets of curves and torsion points with
known (smooth) degrees such that the isogeny can be evaluated by having the knowl-
edge of curves and action of it on the torsion group. Isogenies using such representa-
tion have their kernel generators defined over Fp2 . The second isogeny representation
used is the two dimensional representation where both the domain and codomain of
the isogeny is provided. Such isogenies are defined over large extension fields of Fp2 .
The core idea is that in the PKE, one party computes isogenies of unknown and non-
smooth degree with kernel generators defined over large extension fields, while the
other party computes smooth degree isogenies to establish a commutative diagram to
obtain a shared secret.

4.4.1 Protocol

The POKÉ protocol has the following commutative diagram:

E0 EA

EB EAB

φ

ψ φ′

φ′

Let p be a prime of the form p = 2a3b5cf − 1, where f is a small cofactor. Let
E0 be the supersingular elliptic curve defined over Fp2 with j-invariant 1728. Let
(P0, Q0), (R0, S0), (X0, Y0) denote bases of E0[2

a], E0[3
b] and E0[5

c], respectively.
Key Generation: Here we sample q ∈ [1, 2a−1], coprime with 2,3,5, and compute

a uniformly random isogeny φ : E0 → EA of degree q(2a− q). The secret key consists
of representation of φ, while the public key consists of EA with the following points:

1. PA, QA := [α2]φ(P0), [β2]φ(Q0), where α2, β2
$←− Z×

2a

2. RA, SA := [γ3]φ(R0), [γ3]φ(S0), where γ3
$←− Z×

3b

3. XA, YA := [δ5]φ(X0), [δ5]φ(Y0), where δ5
$←− Z×

5c

One must note that the 2a-torsion is scaled diagonally with different scalars for P0

and Q0, while same coefficients are used for R0, S0 and X0, Y0. The reasoning behind
this is that scaling the 3b torsion with same coefficient is needed to compute parallel
isogenies during encryption, while diagonal scaling of the 2a guarantees security of
the scheme.

44

To generate the secret isogeny, we first generate an endomorphism θ of E0 of
degree q(2a− q)3b5c by using the algorithm FullRepresentInteger [DLLW23, Algorithm
1]. Then we compute the 3b5c-isogeny η : E0 → EA that backtracks θ, i.e, η is such
that η ◦ θ = [3b5c]φ, for some q(2a − q)-isogeny φ : E0 → EA. We evaluate points
under φ to obtain the torsion points in the public key. Since η ◦ θ = [3b5c]φ, we
have φ = [1/(3b5c)]η ◦ θ, which allows us to evaluate φ on any point of order coprime
with 3b5c. Hence we obtain images φ(P0), φ(Q0) on the 2a-torsion and thus we have a
higher dimensional representation of φ. Using Kani’s Lemma 2.1.25 we can evaluate
φ on any points. This is summarized in the following algorithm.

Algorithm 14 Generating a q(2a − q)-isogeny
Input: A degree q, a prime p of the form p = 2a3b5cf − 1.
Output: A representation of q(2a − q)-isogeny φ : E0 → EA.

1: Generate an endomorphism θ of E0 of degree q(2a − q)3b5c.
2: Compute P ′, Q′ = θ(P0), θ(Q0)

3: Let K = ker(θ̂) ∩ E0[3
b5c]

4: Compute η : E0 → EA with kernel K
5: Compute PA, QA = [1/(3b5c)]η(P ′), [1/(3b5c)]η(Q′)

6: Compute Φ with kernel 〈([−q]P0, PA), ([−q]Q0, QA)〉
7: return Φ

Here we note that in the article [BM24] there is an additional method of key
generation which is a rigorous one, however much more computationally intensive
but yields uniformly distributed keys. However the method presented in this thesis is
much more efficient and it’s output is computationally indistinguishable from uniform
distribution.

Encryption: The sender samples a random integer r3
$←− Z3b and computes the

parallel isogenies ψ : E0 → EB and ψ′ : EA → EAB, respectively with kernel ω2
$←− Z×

2a

as well as random unimodular matrix Γ5
$←− SL2(Z5c). Then, the sender computes the

points (
PB

QB

)
=

(
ω2 0

0 1/ω2

)(
ψ(P0)

ψ(Q0)

) (
XB

YB

)
= Γ5

(
ψ(X0)

ψ(Y0)

)
on the curve EB and similarly obtains(

PAB

QAB

)
=

(
ω2 0

0 1/ω2

)(
ψ(PA)

ψ(QA)

) (
XAB

YAB

)
= Γ5

(
ψ(XA)

ψ(YA)

)

on the curve EAB.

45

The ciphertext consists of the curve EB, together with the points (PB, QB),
(XB, YB), the curve EAB, together with the points PAB, QAB, and the message-
encoding component ct′ = m⊕KDF (XAB, YAB), where KDF is a fixed key-derivation
function, often modelled as a symmetric cipher or a hash function. The encryption
procedure is summarized in the following algorithm:

Algorithm 15 POKE.Enc encryption algorithm
Input: A message m, a public key EA, PA, QA, RA, SA, XA, YA.
Output: A ciphertext ct.

1: Sample a random r3
$←− Z3b

2: Compute the isogeny ψ : E0 → EB with kernel 〈R0 + [r3]S0〉.
3: Compute the isogeny ψ′ : EA → EAB with kernel 〈RA + [r3]SA〉.
4: Sample a random ω2

$←− Z×
2a .

5: Compute PB = [ω2]ψ(P0), QB = [1/ω2]ψ(Q0).
6: Compute PAB = [ω2]ψ

′(PA), QAB = [1/ω2]ψ
′(QA).

7: Sample Γ5
$←− SL2(Z5c).

8: Compute [XB, YB]
T = Γ5[ψ(X0), ψ(Y0)]

T .
9: Compute [XAB, YAB]

T = Γ5[ψ
′(XA), ψ(YA)]

T .
10: Compute ct′ = KDF (XAB, YAB)⊕m.
11: return ct = ((EB, PB, QB, XB, YB), (EAB, PAB, QAB), ct

′)

Decryption: First, the receiver computes the points P ′
AB, Q

′
AB = [1/α2]PAB, [1/β2]QAB.

By commutativity of the diagram φ′ψ = ψ′φ, it follows that P ′
AB, Q

′
AB are the ex-

act images of PB, QB under φ′. The sender computes the 2-dimensional isogeny
Φ′ : EB × EAB → F × F ′ such that

kerΦ′ = 〈([−q]PB, P ′
AB), ([−q]QB, Q

′
AB)〉

which by Kani’s Lemma (2.1.25) can be expressed in the following form:

Φ′ =

(
φ1 −φ̂2

∗ ∗

)
: EB × EAB → F × F ′

where φ1 : EB → F and φ2 : F → EAB are a decomposition of φ′ i.e, φ′ = φ2 ◦ φ1

with degφ1 = q and degφ2 = 2a − q. The receiver first evaluates

(X ′
B,_) = Φ′(XB,OEAB

) and (Y ′
B,_) = Φ′(YB,OEAB

)

to obtain images of XB, YB on the middle curve F , then generate a basis U, V of
EAB[5

c] and similarly map it to the middle curve by computing

(U ′,_) = Φ′(OEB
, U) and (V ′,_) = Φ′(OEB

, V)

46

The receiver then finds a change of basis matrix that maps X ′
B, Y

′
B to U ′, V ′, i.e, they

find coefficients x, y, w, z such that

X ′
B = [x]U ′ + [y]V ′, Y ′

B = [w]U ′ + [z]V ′

Lastly receiver obtains φ′(XB) as [2a − q]([x]U + [y]V) and φ′(YB) as [2a − q]([w]U +

[z]V), from which they obtain XAB = [δ5]φ
′(XB) and YAB = [δ5]φ

′(YB). The decryp-
tion algorithm is summarized in the following algorithm:

Algorithm 16 POKE.Dec decryption algorithm
Input: sk = (q, α2, β2, δ5), ct = ((EB, PB, QB, XB, YB), (EAB, PAB, QAB, ct′))
Output: A message M ′

1: Compute P ′
AB, Q

′
AB = [1/α2]PAB, [1/β2]QAB.

2: Compute Φ′ such that kerΦ′ = 〈([−q]PB, P ′
AB), ([−q]QB, Q

′
AB)〉.

3: Evaluate (X ′
B,_) = Φ′(XB,OEAB

).
4: Evaluate (Y ′

B,_) = Φ′(YB,OEAB
)

5: Generate a basis 〈U, V 〉 = EAB[5
c]

6: Evaluate U ′,_) = Φ′(OEB
, U)

7: Evaluate (V ′,_) = Φ′(OEB
, V)

8: Find x, y such that X ′
B = [x]U ′ + [y]V ′.

9: Find w, z such that Y ′
B = [w]U ′ + [z]V ′.

10: Compute XAB = [δ5]φ
′(XB)

11: Compute YAB = [δ5]φ
′(YB)

12: Compute m′ = KDF (XAB, YAB)⊕ ct′

13: return m′

The security of this protocol is guaranteed by the computational hardness of the
following problem:

Problem 4.4.1. C-POKE
Let p be a prime of the form p = 2a3bf − 1. Let E0 be a supersingular elliptic

curve defined over Fp2, and write P0, Q0 for a basis of E[2a], R0, S0 for a basis of
E[3b], and X0, Y0 for a basis of E0[5

c]. Let φA : E0 → EA be an isogeny of degree
q(2a−q) for some unknown value q. Write PA, QA = [α2]φA(P0), [β2]φA(Q0), RA, SA =

[γ3]φA(R0), [γ3]φA(S0) and XA, YA = [δ5]φA(X0), [δ5]φA(Y0), where α2, β2, γ3, δ5
$←−

Z∗
2a × Z∗

2a × Z∗
3b
× Z∗

5c.

Let φB : E0 → EB be an isogeny of degree 3b and write φ′
B : EA → EAB for the

pushforward φA∗φB . Write

47

1. PB, QB = [ω2]φB(P0), [1/ω2]φB(Q0)

2. PAB, QAB = [ω2]φ
′
B(PA), [1/ω2]φ

′
B(QA)

3. XB, YB = Γ5[φB(X0), φB(Y0)]
T

4. XAB, YAB = Γ5[φ
′
B(XA), φ

′
B(YA)]

T

where ω2
$←− Z∗

2a and Γ
$←− SL2(Z5c).

Given (E0, (P0, Q0), (R0, S0)), (EA, (PA, QA), (RA, SA), (XA, YA)), (EB, (PB, QB), (XB, YB))

and (EAB, (PAB, QAB)), compute XAB, YAB

4.4.2 Security Analysis

The security of the protocol relies on the new assumption Problem 4.4.1. From it’s
structure, it is a Computational Diffie Hellman (CDH)-like problem where given pub-
lic data produced by two parties, it computes their shared secret. The SIDH attacks
[CD22, MM22, Rob22], while successful given torsional information, reasonably can-
not work in this case since the Problem 4.4.1 does not reveal any action of any isogeny
on any point of order 5c on EAB, thus it seems to be hard to be able to obtain the
shared secret points XAB without being able to evaluate either φ or ψ.

The authors claim that the security of the receiver against key-recovery attacks
depend on the following problem:

Problem 4.4.2. Let p be a prime of the form p = 2a3bf−1. Let E0 be a supersingular
elliptic curve defined over Fp2, and write P0, Q0 for a basis of E[2a], R0, S0 for a basis
of E[3b5c]. Let φA : E0 → E1 be an isogeny of degree q(2a − q) for some unknown
value q. Write

[P1, Q1]
T =

[
α2 0

0 β2

]
[φA(P0), φA(Q0)]

T [R1, S1]
T =

[
γ 0

0 γ

]
[φA(R0), φA(S0)]

T

where α2, β2, γ
$←− Z∗

2a × Z∗
2a × Z∗

3b
× Z∗

5c.
Given (E0, (P0, Q0), (R0, S0)) and (E1, (P1, Q1), (R1, S1)), recover φ

This problem is in fact similar to Problem 4.3.3, and hence the attacks against
FESTA described in Section 4.3 can be ported easily in this case, however in this case
the degree is unknown, hence it can be considered a bit stronger assumption than the
Problem 4.3.3.

Analogously, the problem guaranteeing the security of the sender can be defined
like above:

48

Table 4.2: Suggested POKE parameters for 128,192, 256 bits security

AES NIST p (in bits) ciphertext public key compressed pk

128 level 1 431 ≈ 648 bytes 324 bytes ≈ 270 bytes
192 level 3 648 ≈ 972 bytes 486 bytes ≈ 405 bytes
256 level 5 863 ≈ 1296 bytes 648 bytes ≈ 540 bytes

Problem 4.4.3. With the same setup as Problem 4.4.1, given 4(E0, (P0, Q0), (X0, Y0)),
(EA, (PA, QA), (XA, YA)), (EB, (PB, QB), (XB, YB)) and (EAB, (PAB, QAB)), compute
the isogeny ψ

4.4.3 Parameters

To guarantee the security of the protocol, the authors make the following parameter
choices:

• a ≈ λ: This makes brute forcing q hard.

• 3b ≈ 22λ: Choosing 3b the degree of the encryption isogenies leads to a fast
encryption procedure. The choice of b also prevents meet-in-the-middle attacks
to recover φ.

• 5c ≈ 2λ/3: This enables a quick evaluation of isogenies with a higher dimensional
representation [BM24, Rem. 6]. and large enough to avoid brute force attacks.

The key sizes provided by the authors are given in the Table 4.2. It is evident, that
POKE is one of the most compact isogeny based protocols, due to the huge reduction
in key sizes in comparison to M-SIDH and FESTA.

49

Chapter 5

Cryptanalysis in the
bounded-leakage model

In this chapter we shall be discussing the cryptanalytic attempts made against the
isogeny-based cryptosystems M-SIDH, FESTA, POKÉ. We begin by an initial expo-
sition on leakage models in Section 5.1. In the subsequent sections, we first formalize
the notion of breaking these protocols in the leakage model, then delve into the attacks
in Sections 5.3 and 5.4.

5.1 Bounded-leakage model

A central line of investigation in the field of cryptanalysis is to test the robustness
of assumptions which guarantee security, against feasible attacks on the cryptosys-
tem. In real-world deployment, side-channel attacks involve attacks where the ad-
versary can learn some partial information about the internal secret states of a pro-
tocol through exploitation of the physical attributes of the computing device, such
as through its power consumption, electromagnetic radiation, timing, temperature
and so on. Another source of information leakage are imperfect deletion, where the
contents of memory are not properly erased and information becomes available to the
adversary. Besides being of theoretical interest, study of such attacks can reveal flaws
in the design of protocols and thus give rise to better guiding principles in protocol
construction.

There exists several security models for leakage scenarios in literature, differing
primarily on what information can become available to the adversary. One such model
is the Bounded-leakage model [HLWW13], where an attacker can learn arbitrary
information about the secret key, as long as the total number of bits learned is bounded
by some parameter k, called the leakage bound. We formalize this notion by giving

50

access to the adversary an oracle O, which she can query in arbitrary order during the
running of the protocol, where each query to the oracle consists of a leakage function
Leak and the oracle O responds with information about the secret key, bounded by
the size k. Throughout this chapter we shall focus on this model, due to it’s simplicity,
applicability and relevance to real world scenarios.

5.2 Problem statement

In this section we formally define the problem that we aim to solve in the leakage
model. Furthermore, we reduce the initial problem of recovering secret scalars to the
easier task of recovering the secret scalar modulo a sufficiently large subgroup. We
then solely focus on solving this easier problem in the rest of the chapter, using the
methods we have developed in the earlier chapters.

Problem 5.2.1. Let φ : E → E ′ be an isogeny of unknown degree q between super-
singular elliptic curves. Further, let P,Q be a basis of E[N] and α, β ∈ (Z/NZ)× be
secret scalars. Lastly, let k ≤ log(N) and let Leakk : (Z/NZ)× → {0, 1}k be a leakage
function. Given the tuple

(P,Q, [α]φ(P), [β]φ(Q), Leakk(α), Leakk(β)),

recover φ.

The above problem reduces to the following, seemingly easier problem, due to the
existence of SIDH attacks which can be applied, once the scalars are known.

Problem 5.2.2. Let φ : E → E ′ be an isogeny of unknown degree q between super-
singular elliptic curves. Further, let P,Q be a basis of E[N] and α, β ∈ (Z/NZ)× be
secret scalars. Lastly, let k ≤ log(N) and let Leakk : (Z/NZ)× → {0, 1}k be a leakage
function. Given the tuple

(P,Q, [α]φ(P), [β]φ(Q), Leakk(α), Leakk(β)),

recover α, β mod M for some sufficiently large M ≤ N .

5.3 Coppersmith-style attacks

5.3.1 M-SIDH

Let p = ABf − 1 such that A =
∏t

i=1 ri and B =
∏t

i=1 qi are co-prime integers, ri, qi
are distinct small primes. In the M-SIDH protocol as described in 4.2, the scalar α

51

which masks the torsion point images is sampled from {x ∈ Z/BZ | x2 = 1 mod B}.
To break the scheme, one needs to recover α. Assuming the most significant bits
(MSBs) of α leak, we can recover α using the original Coppersmith’s method (as
described in Section 3.1.1) for the polynomial equation x2 = 1 mod B. For the sake
of readability we re-iterate Theorem 3.1.2:

Theorem 5.3.1. Let N be an integer of unknown factorization. Let f(x) be a uni-
variate monic polynomial of constant degree δ. Then we can find all solutions x0 of
the equation

f(x) = 0 mod N with |x0| ≤ N1/δ

in time polynomial of logN and δ for any ε > 0.

Assume access to the oracle O(P) = ([α]ϕ(P),MSB`(α)) which outputs the µ

-MSBs of the scalar, then we can write

α = A0 + x0

where A0 is known and x0 is unknown. We have the modular polynomial equation
p(x) = (A0 + x)2 − 1 = x2 + 2A0x + (A0

2 + 1). Also, |x0| ≤
√
B − (A0 + 1) <

√
B − A0. Define X =

√
B − A0. Since µ MSBs are known, |x0| < 2k−µ, where

k = log2(α) ≈ log2(B). To satisfy Theorem 3.1.2, we must have the bound X on
the unknown x0 such that X < B

1
2 . Then we have that for µ = 1

2
log2B and X,

|x0| ≤ 2log2(B)− 1
2

log2B = 2
1
2

log2B. The following corollary then satisfies Theorem 3.1.2.

Corollary 5.3.2. We can find α in time polynomial of (logB, 2δ) if we know 1
2

log2B

most significant bits of α.

5.3.2 FESTA

In the case of FESTA (as described in Section 4.3) the equation scalars obeying the
equation f(α, β) = αβ − 1 = 0 mod pk lends itself to Coppersmith-style approaches
(as outlined in Sections 3.1.3 and 3.2). It must be noted that the case when the prime
is a power of two, this method is superseded by the combinatorial attack (in Section
5.4), hence we focus on p > 2-powers in this section.

Case 1: shifting Blocks of Missing Bits

Assume that we have a leakage of µ-MSBs A and B of α and β, given by some oracle
O(α, β). We write then

α = A · 2k−µ + x, β = B · 2k−µ + y

52

such that x, y ≤ 2k−µ unknown and substitute that into f(α, β) = 0 mod pk. However,
we can do the same thing if we additionally know the `-LSBs too:

α = A · 2k−µ + x · 2` + a, β = B · 2k−µ + y · 2` + b, x, y ≤ 2k−µ−`

where a and b denote the known LSBs. Then the challenge towards solving Problem
5.2.2 in this scenario is to figure out the missing block of bits in between the leaked
MSBs and LSBs.

By substituting the above equation into f(a, b) = 0 mod pk and ensuring that the
coefficient of the leading monomial is 1, we can in fact recover an arbitrary block
of consecutive missing bits, using the Automated Coppersmith with the polynomial
f(a, b) = 0 mod pk using Theorem 3.2.4, and corresponding Algorithms 4, and pa-
rameter choices in Section 3.2.2. We re-iterate the theorem for readability:

Theorem 5.3.3. Suppose we are given a modulus M ∈ N, polynomial f ∈ ZM [x1, . . . , xk]

and bounds 0 ≤ X1, . . . , Xk ≤ M , where k = O(1). Furthermore, suppose we are
given an integer m ∈ N , a set of monomials M, a monomial order ≺ on M and an
(M,≺)-suitable set of polynomials F ⊂ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f) ⊆ ZMm,X1,...,Xk

(F) (5.1)

If the conditions

∏
λ∈M

|LC(F [λ])| ≤ M (m−k)|M|∏
λ∈M λ(X1, . . . , Xk)

(5.2)

log(M) ≥ |M ≥ m and |M| ≥ k hold, then we can compute all r ∈ ZM,X1,...,Xk
(f)

in time polynomial in deg(F) · log(M) under Heuristic 3.2.2 for k > 1.

One must note the reason why this approach only works for p > 2, since if p = 2

then the coefficient of the leading monomial is likely to contain a power of 2 and
thus is not invertible. Repeating multiple experiments in SageMath [S+25], using the
implementation available in [MN23], we note that asymptotically we can only expect
to recover 25% of α and β with this method since for bounds X,Y on x, y we need
to satisfy

XY <
(
pk
)1/ deg(f) =⇒ X,Y < pk/4.

Case 2: missing Bits Scattered Around α

As mentioned above, it might be problematic to apply the above approach if we are
getting random bits of α. However, it might be possible to write

α = A1 · 2k−µ1 + x1 · 2`1 + A2 · 2k−µ2 + x2 · 2`2 . . .

53

and similarly
β = B1 · 2k−µ1 + y1 · 2`1 + . . .

where the xi, yi ∈ {0, 1} are (extremely) small roots of the multivariate polynomial
f(a, b) = ab− 1 mod pk. Assuming we are missing λ bits in each α and β (i.e. after
substitution f has 2λ variables and total degree 2), then Coppersmith’s condition
becomes ∏

XiYi <
(
pk
)1/2 =⇒ Xi, Yi < pk/4λ.

As long as pk/4λ > 1 this method still works as the roots are in {0, 1}. However,
since the runtime of all Coppersmith-style procedures are exponential in λ due to the
fact that λ ∈ O(1). It is still in speculation if a sub-exponential attack might be
developed if λ ∈ O(

√
k), in such a scenario.

5.3.3 POKÉ

For POKÉ protocol (as described in Section 4.4), we have the parameters: prime p
with the structure p + 1 = 2a3b5cf where 2a ≈ 2λ, 3b ≈ 22λ and 5c ≈ 2λ/3. We have
the public key which contains the following torsion point information:

E0, E1, (P0, Q0) ∈ E0[2
a], (R0, S0) ∈ E0[3

b], (X0, Y0) ∈ E0[5
c]

(P1, Q1) = ([α2]ϕA(P0), [β2]ϕA(Q0)), (R1, S1) = ([γ3]ϕA(R0), [γ3]ϕA(S0)),

(X1, Y1) = ([δ5]ϕA(X0), [δ5]ϕA(Y0))

Using the properties of the Weil pairing (Cor. 2.1.21) on R1, S1 and X1, Y1 we can
get the equations involving unknowns γ3, δ5 q

γ23q(2
a − q) = 1 mod 3b, δ25q(2

a − q) = 1 mod 5c. (5.3)

From the bilinearity of the pairing we can also get

e3b5c(R1 +X1, S1 + Y1)

= e(R1, S1) · e(R1, Y1) · e(X1, S1) · e(X1, Y1)

= e(R0, S0)
γ23q(2

a−q) · e(R0, Y0)
γ3δ5q(2a−q) · e(X0, S0)

γ3δ5q(2a−q) · e(X0, Y0)
δ25q(2

a−q)

= ζµ1γ
2
3q(2

a−q) · ζµ2γ3δ5q(2a−q) · ζµ3γ3δ5q(2a−q) · ζµ4δ25q(2a−q)

where ζ is a generator of the group of 3b5c-th roots of unity and the exponents µi are
known. Hence we also get the equation

(µ1γ
2
3 + (µ2 + µ3)γ3δ5 + µ4δ

2
5)q(2

a − q) = 1 mod 3b5c (5.4)

54

for some known constants µi. Thus using Equations 5.3,5.4 we can use Automated
Coppersmith 5.3.3, as in the previous section and recover γ3, δ5 and q. In accordance
with the experiments, we observe that we require > 80% leakage for the scalars to
be recovered by this method. This approach is a bit more heavy handed and slower
here, since the equations involve quadratic here, in contrast to the linear equations
used in Sections 5.3.1, 5.3.2. It is to be noted, that we break the POKÉ protocol if
we can recover q itself, since the security of POKÉ relies heavily on the secrecy of the
degree q(2a − q).

5.4 Combinatorial attacks

In this section we outline a combinatorial attacks against Problem 5.2.2, which out-
perform the Coppersmith-style attacks, in the case when we consider scalars modulo
power of 2.

5.4.1 Procedure

A basic combinatorial approach trying to attack is the following: write scalars α, β
symbolically as 2ixi and 2iyi respectively, where xi is the i-th binary digit if known,
and an unknown otherwise. We then compute the product αβ, which we know to
be 1. For each i ≤ n, where n is the number of bits of α and β, we obtain an
equation mod 2i including (possibly) some of the xj, yj. Notice that the variable xj,
if defined, will not appear in any equation mod 2i with i ≤ j, and will necessarily
appear multiplied by 2j in the equation mod 2j+1, since β is odd. The same is true
for yj.

This suggests to solve the equations incrementally, and keep track of the possible
solutions of the variables involved. In this way, when we try to solve the equation
mod 2i+1, we can evaluate all the variables xj, yj for j < i in each of the possible

solution we have kept so far. There are three possibilities:

1. Only one bit among xi, yi is known. In this case we have one equation and one
binary variable, which admits a single solution. Thus for every valid evaluation
of the variables up to i− 1 we have exactly one valid evaluation of the variables
up to i. We denote this situation as mismatch;

2. Neither xi nor yi are known. We have one equation in two binary variables,
namely xi + yi = c where c is 0 or 1 depending on the value assigned to the
other variables. For each value of c, we have two possible combinations of xi

55

and yi satisfying the equation. Hence, the number of possible evaluations gets
doubled. We call this situation a negative match;

3. Both xy and yi are known. We refer as this case as positive match. In this
case we obtain one equation and zero variables. The fact that the equation
αβ = 1 is satisfied for an evaluation when considered mod 2i does not imply
that the same evaluation multiplies to 1 mod 2i+1. On average, we expect this
to happen roughly half of the times, and consequently to half the number of
valid evaluations in this step. However, unlike in the other cases, this reasoning
is only heuristic.

Leakage scenarios

I. In the situation where there are no leaks, we will encounter n negative matches,
producing 2n possible solutions as expected.

II. If, the first half of α and the second half of β are leaked, then we only encounter
mismatches, and since we start with one possible solution we will only have one
possible solution throughout the whole process and end up recovering α and β.

III. If otherwise both α and β leak their least significant bits, we will have first
n/2 positive matches, leaving us with one (trivial) evaluation on 0 variables.
After that, we will encounter n/2 negative matches, creating 2n/2 total possible
evaluations.

5.4.2 Complexity

The complexity of this above procedure is given by the number of possible evaluations
that we have to process. On average, given uniform leakages of half of the n bits of α
and β, we expect n/2 mismatches, n/4 positive matches and n/4 negative matches.
Notice, by definition, we have the number of positive matches equals the number of
negative matches.

The actual complexity hence lies somewhere between the extreme case in which
the positive matches have no effect, and there are 2n/4 possible solutions, and the
extreme opposite in which the matches eat each other and we are never left with
more than 2 solutions.

To get a better estimate of the concrete behavior of the algorithm, we run it for
different bit sizes, with half of the bits uniformly leaked, and reported the average path
width (i.e. the average number of valid evaluations of the variables through all the
steps of the algorithm) computed over 1000 runs for each size. The results are shown

56

Figure 5.1: Average path width

in Figure 5.1. While probably still exponential, the performance of the algorithm is
quite good. For comparison, the path width for n = 60 in the worst case, in which
we have 15 positive matches followed by 15 negative ones and then 30 mismatches
would be greater than 8700 instead of the observed average below 25. In practice, we
can solve instances of 300 bits in minutes. This is indeed better in performance than
the brute-forced Coppersmith method, and does not involve complicated fine tuning
of parameters.

In conclusion, the complexity of the algorithm is upper bounded by O(nS) where
S is the biggest size of Qk during the execution, and Qk is the list of pairs (x, y) such
that xy = 1 mod 2n with x, y matching known bits of α, β respectively, up to 2k.

57

Chapter 6

On the choice of matrices made in
FESTA

In this chapter, we reproduce the contents of the article [Das25].

6.1 Introduction

In the article [BMP23] the authors claim that the choice of diagonal matrices to scale
torsion point images in the countermeasure FESTA is not a singular choice, and that
the security of the scheme shall not be jeopardized if the commutative subgroup of
diagonal matrices could be replaced by any other commutative subgroup of invertible
matrices, such as that of circulant matrices1. In the framework of [FFP24], it is
interesting to ask if the corresponding level structures reduce to each other. Here we
confirm that the circulant case indeed reduces to the diagonal case as proposed in
[BMP23] when the scaling matrices are defined over (Z/NZ)× for N = pr for prime
p > 2. In the special case when the matrices are defined over finite fields i.e, N = p

for some large prime, the reduction to the diagonal case holds for any (non-trivial)
commutative subalgebra. However, when N = 2k, we show that a reduction between
the two cases is not possible by our method, which is in contrast to the aforementioned
claim.

1Implicitly, the choice of scaling matrices sourced from the group must be non-trivial to prevent
exploitation by the SIDH attacks.

58

6.2 Preliminaries

6.2.1 Matrices

Definition 6.2.1. A n× n circulant matrix C takes the following form:



c0 cn−1 · · · c2 c1

c1 c0 cn−1 c2
... c1 c0

.

cn−2
. cn−1

cn−1 cn−2 · · · c1 c0


Definition 6.2.2. For a ring R and n ≥ 1, let α ∈ R be a principal n-th root of
unity. The Discrete Fourier transform over a ring R is defined as follows (in matrix
notation): 

f0

f1
...

fn−1

 =



1 1 1 · · · 1

1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
1 αn−1 α2(n−1) · · · α(n−1)(n−1)




v0

v1
...

vn−1



6.2.2 Level structures

We shall use the framework of isogeny problems with level structure as proposed in
[FFP24] to phrase the underlying problem in FESTA. The definition of a Γ-SIDH
problem is as follows:

Definition 6.2.3. Fix coprime integers d,N and Γ ≤ GL2(Z/NZ). Let E φ−→ E ′ be
an isogeny of degree d and S be a Γ level structure.
The (d,Γ)-modular isogeny problem (of level N) asks that given (E, S,E ′, φ(S)) to
compute φ. When d is clear, this is referred to as the Γ-SIDH problem.

If one replaces Γ by

{(
a 0

0 b

)}
≤ SL2, then we have the underlying Γ-SIDH

problem for FESTA, and analogously for other Γ.

6.3 Reduction

Lemma 6.3.1. For a matrix A ∈ SL2(Z/NZ) and Γ ≤ SL2(Z/NZ), a Γ-SIDH
problem reduces to A−1ΓA-SIDH problem, given an oracle to solve discrete log in

59

µN ⊂ F×
qr , the subgroup of nth roots of unity.

Proof. Let (E, S,E ′, S ′) be a Γ-SIDH problem. Choose a representative (P,Q)

of S, and compute its Weil pairing W1 := eN(P,Q). Define S̄ = A−1ΓA · (P,Q). The
Weil pairing gives us

eN(φ(S̄)) = eN(S̄)
degφ = W d

1

Now, choose a representative (P ′, Q′) := φ(P,Q) of φ(S) and compute the Weil pair-
ing W2 = eN(P

′, Q′). Use the oracle to compute discrete logarithm x of W d
1 to base

W2 and find a matrix γ′ ∈ Γ such that det γ′ = x. Define S̄ ′ := A−1ΓA · γ′ · (P ′, Q′);
then S̄ ′ = φ(S̄). Hence (E, S̄, E ′, S̄ ′) is an instance of A−1ΓA-SIDH problem, having
the same solution as the Γ-SIDH problem. �

6.3.1 For N = pk with odd p

Lemma 6.3.2. If C denotes a circulant matrix defined over2 Z/NZ and F denotes
the Discrete Fourier transform matrix defined over Z/NZ, then for some diagonal
matrix D we have that C = F−1DF .

Proof. Any circulant matrix can be decomposed into a polynomial in terms of
the permutation matrix P as C =

∑n
i=0 ciP

i where ci are entries of the circulant
matrix. Since the permutation matrix is defined over R, the eigenvectors of P are
(αk, α2k, . . . , α(n−1)k) for 0 ≤ k ≤ n−1 where α is a principal n-th root of unity. Then
the permutation matrix (and subsequently linear combination of it’s powers) can be
diagonalized by conjugating with a matrix which has the eigenvectors as columns.
This matrix is precisely the Discrete Fourier Transform matrix as defined above.
Hence the circulant matrix can be written as C = F−1DF where D is the diagonal
matrix obtained from the linear combination of diagonal matrices. �

Using the above two lemmas, one can conclude the following theorem:

Theorem 6.3.3. For D =

{(
a 0

0 b

)}
and C =

{(
a b

b a

)}
such that both are

subgroups of SL2(Z/NZ), where N = pk for p > 2 and k > 0. Then the C-SIDH
problem reduces to D-SIDH problem.

2This theorem holds for any ring R such that F is invertible in Mn×n(R).

60

6.3.2 For N = 2k

Theorem 6.3.4. For a invertible matrix of the form

(
a b

b a

)
, there does not exist a

diagonalization over the ring Z/NZ where N = 2k, for k > 0.

Proof. Let A :

(
a b

b a

)
∈ SL2(Z/NZ) such that it is invertible, which implies

detA = (a2 − b2) is a unit. Since the odd numbers in (Z/NZ) are the units, it is not
possible if both a and b are odd (or even), hence one must be odd and the other must
be a even for the matrix A to be invertible. Without loss of generality, assume that
a is a even and b is a odd.

The characteristic polynomial of A is p(t) = (t− a)2− b2. If we solve the equation
for the eigenvalues, (t − a)2 = b2 mod N entails that (t − a) is a odd since b is a
odd. Since a is a even and (t − a) is a odd, it implies that the eigenvalues must be

a odd. Let λ be an eigenvalue of A and v :=

(
x

y

)
be the corresponding eigenvector.

From the equation Av = λv we obtain the equations ax + by = λx mod N and
ay+ bx = λy mod N . Adding both of them, we obtain (a+ b−λ)(x+ y) = 0 mod N .

Suppose x, y are not both odd (or even) at the same time, i.e, (x+ y) and (x− y)
are odd. This implies that (a + b − λ) = 0 mod N =⇒ a + b = λ mod N . Then
substituting λ in the equation ax + by = λx mod N we have b(y − x) = 0 mod N .
Since both are odd by assumption, it is a clear contradiction. Hence x, y must be both
odd (or even). We have the modular matrix3 (v1, v2) obtained from the corresponding

eigenvectors vi whence vi =

(
xi

yi

)
with xi, yi being both odd (or even). However for

all possible combinations of vi (i.e, when vi is comprised of units or non-units), the
modular matrix turns out to be singular. This entails that a diagonalization is not
possible for A over the ring (Z/NZ). �

Hence our strategy of the previous section fails and we cannot say anything con-
clusively regarding the reduction of the circulant case to the original diagonal case.
This is indeed contrasting to the claim of [BMP23], since this reduction does not hold
when N = 2k, a parameter choice made in FESTA.

3The matrix P such that A = PDP−1 where D is a diagonal matrix.

61

6.3.3 Finite Fields

For a finite field k = Z/pZ for p > 2, it is a well known result that the 2-dimensional
commutative matrix subalgebras of Mn×n(k) could be classified up to isomorphism
as follows:

D =

{(
a 0

0 b

)}
C =

{(
a b

b a

)}
T =

{(
a b

0 c

)}
In [FFP24] the authors have already showed the reductions between T and D. In

Theorem 3.3 above, we have shown that C reduces to D. Thus one can conclude that
for N = p, the choice for any commutative subalgebra in FESTA still reduces to the
original formulation of FESTA.

62

Bibliography

[BDD+24] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Lu-
ciano Maino, Giacomo Pope, Damien Robert, and Benjamin Wesolowski.
SQIsign2D-west - the fast, the small, and the safer. In Kai-Min Chung
and Yu Sasaki, editors, ASIACRYPT 2024, Part III, volume 15486
of LNCS, pages 339–370. Springer, Singapore, December 2024. doi:

10.1007/978-981-96-0891-1_11.

[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit,
and Antonio Sanso. Cryptanalysis of an oblivious PRF from super-
singular isogenies. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 160–184.
Springer, Cham, December 2021. doi:10.1007/978-3-030-92062-3_6.

[BM24] Andrea Basso and Luciano Maino. POKÉ: A compact and efficient PKE
from higher-dimensional isogenies. Cryptology ePrint Archive, Paper
2024/624, 2024. URL: https://eprint.iacr.org/2024/624.

[BMP23] Andrea Basso, Luciano Maino, and Giacomo Pope. FESTA: Fast en-
cryption from supersingular torsion attacks. In Jian Guo and Ron Ste-
infeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS,
pages 98–126. Springer, Singapore, December 2023. doi:10.1007/

978-981-99-8739-9_4.

[Buc70] B. Buchberger. Ein algorithmisches kriterium für die lösbarkeit eines al-
gebraischen gleichungssytems. Aequationes mathematicae, 4(3):374–383,
1970.

[Buc76] B. Buchberger. Theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bulletin, 10(3):19–29, 1976.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery at-
tack on SIDH (preliminary version). Cryptology ePrint Archive, Report
2022/975, 2022. URL: https://eprint.iacr.org/2022/975.

63

https://doi.org/10.1007/978-981-96-0891-1_11
https://doi.org/10.1007/978-981-96-0891-1_11
https://doi.org/10.1007/978-3-030-92062-3_6
https://eprint.iacr.org/2024/624
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://eprint.iacr.org/2022/975

[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equa-
tion; factoring with high bits known. In Ueli M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 178–189. Springer,
Berlin, Heidelberg, May 1996. doi:10.1007/3-540-68339-9_16.

[Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 155–165. Springer, Berlin, Heidelberg, May 1996. doi:10.1007/

3-540-68339-9_14.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. Journal of Cryptology, 10(4):233–260,
September 1997. doi:10.1007/s001459900030.

[Cor04] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations revisited. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 492–505. Springer,
Berlin, Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_29.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. URL: https://eprint.iacr.org/

2006/291.

[CV23] Wouter Castryck and Frederik Vercauteren. A polynomial time at-
tack on instances of M-SIDH and FESTA. In Jian Guo and Ron Ste-
infeld, editors, ASIACRYPT 2023, Part VII, volume 14444 of LNCS,
pages 127–156. Springer, Singapore, December 2023. doi:10.1007/

978-981-99-8739-9_5.

[Das25] Subham Das. A Note on FESTA, 2025. URL: http://cryptosubh.

github.io/assets/notefesta.pdf.

[De 17] Luca De Feo. Mathematics of isogeny based cryptography. CoRR,
abs/1711.04062, 2017. URL: http://arxiv.org/abs/1711.04062,
arXiv:1711.04062.

[De 20] Luca De Feo. Tools for designing protocols based on iso-
genies, 2020. URL: https://defeo.lu/docet/assets/misc/

2021-08-02-isogeny-school.pdf.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory,, 22(6):644–654, 1976.

64

https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/978-3-540-24676-3_29
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-981-99-8739-9_5
https://doi.org/10.1007/978-981-99-8739-9_5
http://cryptosubh.github.io/assets/notefesta.pdf
http://cryptosubh.github.io/assets/notefesta.pdf
http://arxiv.org/abs/1711.04062
https://arxiv.org/abs/1711.04062
https://defeo.lu/docet/assets/misc/2021-08-02-isogeny-school.pdf
https://defeo.lu/docet/assets/misc/2021-08-02-isogeny-school.pdf

[DLLW23] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
New algorithms for the deuring correspondence - towards practical and
secure SQISign signatures. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 659–690.
Springer, Cham, April 2023. doi:10.1007/978-3-031-30589-4_23.

[dQKL+21] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale,
Lorenz Panny, Christophe Petit, and Katherine E. Stange. Improved
torsion-point attacks on SIDH variants. In Tal Malkin and Chris Peik-
ert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages
432–470, Virtual Event, August 2021. Springer, Cham. doi:10.1007/

978-3-030-84252-9_15.

[Fau99] J.C. Faugére. A new efficient algorithm for computing gröbner bases.
Journal of Pure and Applied Algebra, 139:61–88, 1999.

[FFP24] Luca De Feo, Tako Boris Fouotsa, and Lorenz Panny. Isogeny problems
with level structure. Cryptology ePrint Archive, Paper 2024/459, 2024.
URL: https://eprint.iacr.org/2024/459.

[FMP23] Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit. M-SIDH
and MD-SIDH: Countering SIDH attacks by masking information. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 282–309. Springer, Cham, April 2023. doi:

10.1007/978-3-031-30589-4_10.

[FP22] Tako Boris Fouotsa and Christophe Petit. A new adaptive attack on
SIDH. In Steven D. Galbraith, editor, CT-RSA 2022, volume 13161
of LNCS, pages 322–344. Springer, Cham, March 2022. doi:10.1007/

978-3-030-95312-6_14.

[Gal12] Steven Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, London, 2012.

[Gal22] Steven Galbraith. Attacks on sidh/sike, 2022. URL: https://

ellipticnews.wordpress.com/2022/08/12/attacks-on-sidh-sike/.

[HG97] N. Howgrave-Graham. Finding small roots of univariate modular equa-
tions revisited. Lecture Notes in Computer Science, 1335:131–142, 1997.

[HLWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs.
Leakage-resilient cryptography from minimal assumptions. In Thomas

65

https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2024/459
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14
https://ellipticnews.wordpress.com/2022/08/12/attacks-on-sidh-sike/
https://ellipticnews.wordpress.com/2022/08/12/attacks-on-sidh-sike/

Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 160–176. Springer, Berlin, Heidelberg, May 2013.
doi:10.1007/978-3-642-38348-9_10.

[Jao22] David Jao. Supersingular isogeny key encapsulation,
2022. URL: https://csrc.nist.gov/csrc/media/Projects/

post-quantum-cryptography/documents/round-4/submissions/

SIKE-spec.pdf.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor,
Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, pages 19–34. Springer, Berlin, Heidelberg, November / December
2011. doi:10.1007/978-3-642-25405-5_2.

[Kan97] E. Kani. The number of curves of genus two with elliptic differentials.
Journal für die reine und angewandte Mathematik, 485:93–122, 1997.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography, 3rd Edition. Chapman and Hall, London, 2020.

[May09] Alexander May. Using lll-reduction for solving rsa and factorization prob-
lems. In The LLL algorithm, pages 315–348. Springer, 2009.

[May21] Alexander May. Lattice-based integer factorization - an introduction
to coppersmith’s methods. In Computational Cryptography, number 4,
pages 78–105. Cambridge University Press, 2021.

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH with arbi-
trary starting curve. Cryptology ePrint Archive, Report 2022/1026, 2022.
URL: https://eprint.iacr.org/2022/1026.

[MN23] Jonas Meers and Julian Nowakowski. Solving the hidden number problem
for CSIDH and CSURF via automated coppersmith. In Jian Guo and
Ron Steinfeld, editors, ASIACRYPT 2023, Part IV, volume 14441 of
LNCS, pages 39–71. Springer, Singapore, December 2023. doi:10.1007/

978-981-99-8730-6_2.

[NO23] Kohei Nakagawa and Hiroshi Onuki. QFESTA: Efficient algorithms and
parameters for FESTA using quaternion algebras. Cryptology ePrint
Archive, Report 2023/1468, 2023. URL: https://eprint.iacr.org/

2023/1468.

66

https://doi.org/10.1007/978-3-642-38348-9_10
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/SIKE-spec.pdf
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2022/1026
https://doi.org/10.1007/978-981-99-8730-6_2
https://doi.org/10.1007/978-981-99-8730-6_2
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2023/1468

[NR19] Michael Naehrig and Joost Renes. Dual isogenies and their application
to public-key compression for isogeny-based cryptography. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume
11922 of LNCS, pages 243–272. Springer, Cham, December 2019. doi:

10.1007/978-3-030-34621-8_9.

[Pan22] Lorenz Panny. You could have broken sidh, 2022. URL: https://yx7.

cc/blah/2022-08-22.html.

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using tor-
sion point images. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 330–353.
Springer, Cham, December 2017. doi:10.1007/978-3-319-70697-9_

12.

[Rob22] Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint
Archive, Report 2022/1038, 2022. URL: https://eprint.iacr.org/

2022/1038.

[Rob24] Damien Robert. On the efficient representation of isogenies (a survey).
Cryptology ePrint Archive, Report 2024/1071, 2024. URL: https://

eprint.iacr.org/2024/1071.

[S+25] W. A. Stein et al. Sage Mathematics Software (Version x.y.z). The Sage
Development Team, 2025. http://www.sagemath.org.

[Sil92] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1992.

[Tat66] J. Tate. Endomorphisms of abelian varieties over finite fields. Inventiones
mathematicae, 2:134–144, 1966. URL: http://eudml.org/doc/141848.

[V9char”03017] J. Vélu. Isogénies entre courbes elliptiques. J. R. Acad. Sci. Paris
Sér., A-B 273:A238–A241, 1997.

67

https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-030-34621-8_9
https://yx7.cc/blah/2022-08-22.html
https://yx7.cc/blah/2022-08-22.html
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2024/1071
https://eprint.iacr.org/2024/1071
http://eudml.org/doc/141848

	Abstract
	সারাংশ
	List of Algorithms
	Introduction
	Preliminaries
	Elliptic Curves and Isogenies
	Elliptic curves
	Elliptic curves over finite fields
	Pairings and Isogeny Representations

	Lattice theory
	Basic notions
	Lattice reduction

	Gröbner Bases

	Finding small roots of polynomials
	Coppersmith's method
	Univariate case
	Bivariate case
	Multivariate case

	Automated Coppersmith
	Procedure
	Parameter choices

	Isogeny-based cryptosystems
	SIDH: Supersingular Isogeny Diffie Hellman
	Protocol
	SIDH attack

	M-SIDH: Masked Supersingular Isogeny Diffie Hellman
	Protocol
	Security Analysis
	Parameters

	FESTA: Fast Encryption from Supersingular Torsion Attacks
	 FESTA trapdoor function
	Protocol
	Security Analysis
	Parameters

	POKÉ: POint-based Key Exchange
	Protocol
	Security Analysis
	Parameters

	Cryptanalysis in the bounded-leakage model
	Bounded-leakage model
	Problem statement
	Coppersmith-style attacks
	M-SIDH
	FESTA
	POKÉ

	Combinatorial attacks
	Procedure
	Complexity

	On the choice of matrices made in FESTA
	Introduction
	Preliminaries
	Matrices
	Level structures

	Reduction
	For N = pk with odd p
	For N= 2k
	Finite Fields

